风力发电是一种清洁的、可再生的能源。下面我整理了风力发电技术论文,欢迎阅读!
风力发电技术
摘要:随着世界能源的日趋匮乏和科学技术的飞速发展,加之人们对环境保护的要求,人们在努力寻找一种能替代石油、天然气等能源的可再生、环保、洁净的绿色能源。风能是当前最有发展前景的一种新型能源,它是取之不尽用之不竭的能源,还是一种洁净、无污染、可再生的绿色能源。风能的利用,从风车到风力发电,证明了文明和科学进步。绿色和平组织和欧洲风能协会2002年提出了《风力2012》报告,报告中指出到2020年,世界风力发电将达到世界电力总需求量的12%,我国电力发展“十一五”发展纲要中也指出,中国的风力发电将占世界风力发电总量的14%。风力发电与火力发电和水力发电比较,具有单机容量小、可分散建设等优点。随着国家对能源需求和环保要求力度的不断加大,风力发电的优势和经济性、实用性等优点也必将显现出来。
关键词:风力发电技术
一、风力发电国内外发展现状
1、 国外风力发电发展现状
2012 年新增风电装机容量最多的10 个国家占世界风电装机的87%。与2007 年相比,美国保持第1 名,中国超过西班牙从第3 名上升到第2 名,印度超过德国和西班牙从第5名升至第3 名,前3 名的国家合计新增装机容量占全世界的60%。根据世界风能协会的统计,2012 年全世界风电装机容量新增约2726 万kW,增长率约为29%。累计达到 亿kW,增长率为42%,突破1 亿kW 大关。风电总量为2600 亿kWh,占全世界总电量的比例从2000 年的增加到2012 年的。尽管风电的发展仍然存在着很多困难,如电网适应能力、风能资源、海上风电发展等,但相比于常规能源,经济性优势逐步凸显,世界各国都对风电发展充满了信心。
2、 我国风力发电的现状
我国的风力发电始于20世纪50年代后期,在吉林、辽宁、新疆等省建立了单台容量在10kW以下的小型风力发电场,但其后就处于停滞状态。直到1986年,在山东荣城建成了我国第一座并网运行的风电场后,从此并网运行的风电场建设进入了探索和示范阶段,但其特点是规模和单机容量均较小。到1990年已建成4座并网型风电场,总装机容量为,其最大单机容量为200kW。在此基础上,风力发电从1991年起开始步入了逐步推广阶段,到1995年,全国共建成了5座并网型风电场,装机总容量为,最大单机容量为500kW。1996年后,风力发电进入了扩大建设规模的阶段,其特点是风电场规模和装机容量均较大,最大单机容量为1500kW。据中国风能协会最新统计,2007年中国除台湾省外新增风电机组3,144 台。与2006 年相比,2007年当年新增装机增长率为,累计装机增长率为。2007年中国除台湾省外累计风电机组6,458台,装机容量5,890MW。
各种风力发电机的优缺点
风力发电机组主要由两大部分组成:
风力机部分它将风能转换为机械能;
发电机部分它将机械能转换为电能。
根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组合,风力发电机组可以有多种多样的分类。
(1) 按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。
有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。
而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电机的传动轴,使风机发出的电能同样能并网输出。这样的设计简化了装置的结构,减少了故障几率,优点很多,现多用于大型机组上。
(2) 根据按桨叶接受风能的功率调节方式可分为:
“定桨距(失速型)机组”桨叶与轮毂的连接是固定的。当风速变化时,桨叶的迎风角度不能随之变化。由于定桨距(失速型)机组结构简单、性能可靠,在20 年来的风能开发利用中一直占据主导地位。
“变桨距机组”叶片可以绕叶片中心轴旋转,使叶片攻角可在一定范围内(一般0-90度)调节变化,其性能比定桨距型提高许多,但结构也趋于复杂,现多用于大型机组上。
(3) 按照叶轮转速是否恒定可分为:
“恒速风力发电机组”设计简单可靠,造价低,维护量少,直接并网;缺点是:气动效率低,结构载荷高,给电网造成电网波动,从电网吸收无功功率。
“变速风力发电机组”气动效率高,机械应力小,功率波动小,成本效率高,支撑结构轻。缺点是:功率对电压降敏感,电气设备的价格较高,维护量大。现常用于大容量的主力机型。
(4) 根据风力发电机组的发电机类型分类,可分为两大类:
“异步发电机型” “同步发电机型”
只要选用适当的变流装置,它们都可以用于变速运行风机。
异步发电机按其转子结构不同又可分为:
(a) 笼型异步发电机转子为笼型。由于结构简单可靠、廉价、易于接入电网,而在小、中型机组中得到大量的使用;
(b) 绕线式双馈异步发电机转子为线绕型。定子与电网直接连接输送电能,同时绕线式转子也经过变频器控制向电网输送有功或无功功率。
同步发电机型按其产生旋转磁场的磁极的类型又可分为:
(a) 电励磁同步发电机转子为线绕凸极式磁极,由外接直流电流激磁来产生磁场。
(b) 永磁同步发电机转子为铁氧体材料制造的永磁体磁极,通常为低速多极式,不用外界激磁,简化了发电机结构,因而具有多种优势。 二、相关风力发电控制技术
随着经济节约型社会的逐步推进,风能作为清洁的可再生能源,实现风力发电也越来越受到人们关注。然而面对风况的可变性(锋速的大小、方向的随机性)以及风电场中风力发电机组布置的分散性,要实现风电低成本、超大规模开发利用,作为其可靠、高效运行的关键技术,控制技术需要进行不断地改进,并具有广阔的研究前景。
三、风力发电机组控制系统构成
风力发电机组控制系统由本体系统和电控(总体控制)系统组成,本体系统包括空气动力学系统、发电机系统、变流系统及其附属结构;电控系统由不同的模块构成,主模块包括变桨控制、偏航控制、变流控制等,辅助模块则包括通讯、监控、健康管理控制等。而且,在本体系统与电控系统间实现系统的联系及信号的变换。例如,空气动力系统的桨距由变桨控制系统控制,保证了风能转化的最大化,功率输出的稳定等作用。风轮的自动对风及连续跟踪风向引起电缆缠绕的自动解缆受偏航控制系统控制,分为主、被动迎风两种模式,目前大型并网风电系统多采用主动偏航模式。变流控制常和变桨距系统结合,对变速恒频的运行及最大额定功率进行控制。
根据风电机组不同的分类标准,可将机组控制系统分为不同种类。目前风力发电的主流机型主要是依据桨距特性,发电机类型等分类,通过技术不断改进,控制系统由最先的定桨距恒速恒频控制到变桨距恒速恒频控制,随之发展为变桨距变速恒频控制。此外,据连接电网类型可将风电控制系统分为离网型和并网型,前者已步入大规模稳定发展阶段。后者则成为现阶段控制系统的主要发展方向。
1.变桨控制
变桨控制是风电机组控制系统的研究重点,其实际上即对功率的控制。相对于定桨距控制无法解决桨叶自动失速,功率不稳的问题,该系统通过改变桨距角,使得在低风速(即低于额定风速)时,风机处于最优的风能捕获状态,桨距保持为零,实现风能的最大利用率;在高风速(即高于额定风速)时,改变攻角变化,降低叶片空气动力转矩,又能达到调节速度、限制功率的目的。减小风速、风向可变性对机组的影响。因相应的风轮特性的不同,变桨控制分为主动和被动控制。
2.偏航控制
偏航系统又称对风装置,是风电机组特有的伺服控制系统,将风向改变的信号经过一系列的控制系统程序,调整风轮与风向一致,保证了风电机组的平稳运转,使得风能高效利用,进而大大降低发电成本并有效保护电机。作为随动系统,连续跟踪风向很可能造成电缆缠绕,偏航系统也具有自动解缆的功能。同样对应不同的风电机组,应用不同的偏航装置,分为尾舵对风、侧风轮对风、伺服电机或调向电机调向,前两者为被动迎风,后者为主动迎风。
3.变流系统
变流系统采用全功率变流,完成风电机组输出功率的变换与并网。现今并网系统包括直接并网、降压并网、准同步并网、软并网,而软并网目前使用最普遍。
风电机组启动时,变流控制原件实现风电机的并网,在正常工作中,变流控制单元又要接受主控器的命令,控制输出功率,实现了电网有功功率与无功功率的灵活控制。
四、风力发电技术发展趋势的展望
在我国大力发展以风能太阳能新发电方式为代表的电力系统成为长期的国策,新能源电力不远将来成为我国电力建设不可缺少的部分,随着洋品牌不断降价,整机厂介入,新一轮竞争越来越激烈,要和国内整机厂结合起来大家要做。电网友好耗型的故障穿越式的技术是国产变流器必须解决的问题,国产化使我们国家整个技术水平上一个台阶。
五、风力发电前景的建议
1 做好风能资源的勘察
风资源的测定是发挥风电作用的前提基础,因此将来应该在这方面增大投入,对我国实际的风资源在总体上有细致准确的了解,为政府和风电的决策者合理地规划风电提供正确的指导。为进一步摸清风能资源状况,必须加快开展风能资源的普查工作。这方面,不仅需要有关部门筹集一定资金用于加大风力资源勘测工作的投入,各地也要自筹资金开展本地区风力资源的勘察,认真调查确定可开发风电场的分布和规模。
2 提高风电机组的制造技术
要提高我国风力发电应用的技术水平,需要不断增进与发达国家的交流,学习其先进技术,只有清楚彼此差距,才能不断提升我国的风电技术水平。我国提出,到2010年风电装机要有80%的国产化率,必须在技术上占领竞争制高点。《可再生能源法》规定:“国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域,纳入国家科技发展规划和高技术产业发展规划,并安排资金支持可再生能源开发利用的科学技术研究、应用示范和产业化发展,促进可再生能源开发利用的技术进步”。这一规定为风电技术进步创造了良好的契机。提高风电技术也是降低风电成本和上网电价的关键所在。
3 依托政策发展风电
2006年国家正式实施了《可再生能源法》,2008年,国家发改委印发了《可再生能源发展“十一五”规划》。这些政策法规的出台为风力发电的发展提供了制度上的支持,在具体的措施和规则上还要细化、规范、便于操作,使风电的发展稳步,快速的发展起来。
中国的风电发展迄今已经有30多年,取得了显著进步。但由于基础薄弱,风电发展的过程中面临的技术落后、政策扶持不够及上网电价高等诸多困难。随着政府和民众对风电的逐步认识、《可再生能源法》正式实施和《可再生能源发展“十一五”规划》的出台,以及风电设备的设计、制造技术方面不断提高,风能利用必将为我国的环保事业、能源结构的调整做出巨大的贡献。风电产业和相关的科研机构应该抓住这一契机,为风电的全面发展作一个系统可行的规划,逐步解决风电发展中的困难,完善风电机制,在提高风电战略地位的同时,早日使风电普及惠民。
点击下页还有更多>>>风力发电技术论文
新能源是指传统能源之外的各种能源形式。我整理了浅谈新能源技术论文,欢迎阅读!
论新能源发电技术
摘要:本文从全球能源的现状,介绍了中国能源发电技术的应用情况,发现中国新能源发电对现代化建设具有重要战略意义。进一步介绍了风力发电系统和燃料电池发电系统两种新能源发电技术。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是近期发展的重点。燃料电池是一种将化学能直接转换成电能的装置,它能量转化效率高,几乎不排放氮的氧化物和硫的氧化物。
关键词:新能源;风能;燃料电池;发电技术
中图分类号: F206 文献标识码: A
能源紧缺已成为制约各国经济发展的瓶颈,如何开发先进安全的新能源使用技术、如何提高能源利用率也随之成为世界各国关心的课题。欧盟就首先提出了20-20-20计划:到2020 年,可再生能源占欧盟总能源消耗的20%。2007年12月,美国前总统布什也签署了《能源独立和安全法案》(EISA),从而大力推动新能源的使用和节能计划。另外,从环境的角度来看,为了保护人们赖以生存的地球,开发新能源也是必由之路。
一、我国能源和发电技术的现状
2011年,我国新能源发电继续保持快速发展态势,并网装机容量持续增长,发电量不断增加。截至2011年底,我国新能源安装容量达到7000万kW,居世界首位,并网新能源装机容量达到5409万kW,同比增长,约占全部发电装机容量的。其中,风电并网容量约占并网新能源装机总量的;并网太阳能光伏装机容量约占并网新能源装机总量的;生物质及其他新能源发电装机容量约占并网新能源装机总量的。
2011年,我国新能源发电量约为1016亿kW?h,同比增长,约占全部发电量的。其中,风电发电量约占新能源发电总量的;太阳能光伏发电约占;生物质及其他新能源发电约占。2011年我国新能源发电量按发电煤耗320g/(kW?h)计算,相当于节约3241万tce,减排二氧化碳9030万t。
电能是国民生活和生产的根基,无论是从能源角度,还是电力系统自身方面来看,研究新能源发电技术对于我国的现代化建设和人民生活都具有相当大的现实意义和战略意义。
二、风力发电技术
风能资源主要包括陆地资源与近海离岸资源两部分。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是目前新能源发展的重点方向。
1.发展现状
近年来,我国风力发电产业取得了长足发展,这与我国的风能资源丰富密不可分。据有关资料显示,陆地上离地面10米高度处,我国风能资源理论储量约为43亿千瓦,技术可开发量约为3亿千瓦,离地面50米,估计可能增大一倍;近海资源10米高经济可开发量约亿千瓦,50米高约15亿千瓦。从我国联网风电场总装机量来说,到2006 年底,我国已建成约91个风电场,装机总容量达到约260万千瓦,比2005年新增装机134万千瓦,增长率为105%。根据国家中长期规划,2015年风能发电要达到1500万千瓦,2020年要达到3000万千瓦。但是,与风电发达国家相比,我国的发展规模还很小,发展速度也较缓慢。制约我国风电发展的重要因素包括技术和制度两个方面。技术方面,风电机组的制造水平较低,风电机组性能测试设备和技术也相对落后,并缺少相应的认证机构;制度方面,风电场的运行维护水平和制度与国外风电场及国内火电生产相比有明显差距,缺乏对运行过程中出现的问题和故障的详细记录、分析。
2.对电力系统的影响
风力发电机是以风作为原动力,风的随机波动性和间歇性决定了风力发电机的电能输出也是波动和间歇的。所以,风电场的大规模接入将会带来波动功率,从而加重电网负担,影响电网供电质量和电网稳定性等。
(1)对电能质量的影响。空气气流运动导致的风速波动周期一般为几秒到几分钟,这种短周期的风速波动以及风电机组本身的运行特性可能影响电网的电能质量。首先会对频率产生影响:风力发电有功功率波动引起电磁功率的波动,由于发电机组转子惯性,调节系统很难跟上电磁功率的瞬时变化,造成功率不平衡,使发电机转速变化,系统频率也将改变。此外,风电还会对电压产生影响:并网风电机组输出功率的波动导致电压的波动,而其输出功率的频率范围正处于电压闪变的范围之内(25Hz),因此又会造成电压闪变,最后会产生谐波电压和谐波电流。
(2)对电网稳定性的影响。对较为薄弱的电网,风电功率波动将导致瞬间电压跌落以及风力发电机的频繁掉线。在故障清除之后,发电机的磁化和转差率的增加会消耗大量无功,导致电网电压恢复困难。
(3)对调频调峰能力的影响。气流长时间、季节性运动导致的风速波动周期一般为数小时,甚至数天、数月,这种长周期的风速波动会增加现有电网调频调峰的负担。负荷曲线的低谷期常常对应了风电出力的高峰期,风电场的并网发电使电网的等效负荷峰谷差增大,大大增加了电网调频调峰负担。
三、太阳能光伏电池发电技术
1. 1 太阳能光伏电池
太阳能光伏电池发电也简称为太阳能光伏发电,被认为是未来世界上发展最快和最有前途的一种可再生新能源技术。太阳能光伏电池的基本原理是利用半导体的“光生伏打效应”( 光伏效应) 将太阳的光能直接转换成电能。能利用光伏效应产生电能的物质,称为光伏材料。利用光伏效应将太阳能直接转换成电能的器件叫太阳能光伏电池或光伏电池。光伏电池是太阳能光伏发电的核心组件。
1839 年,法国物理学家贝克勒尔 ( Edmond Bec-qurel) 发现: 将两片金属浸入电解液中所构成的伏打电池,当接收到太阳光照射时电压升高,他在所发表的论文中把这种现象称为“光生伏打效应( PhotovohaicEffect) ”。“光生伏打效应”是不均匀半导体或半导体与金属混合材料在光照作用下,其内部可以传导电流的载流子分布状态和浓度发生变化,因而在不同部位之间产生电位差的现象。1941 年,奥尔在硅材料上发现了光伏效应,从而奠定了半导体硅在太阳能光伏发电中广泛应用的基础。1954 年,美国贝尔实验室的科学家恰宾( Darryl Chapin) 和皮尔松( Gerald Pearson) 研制成功世界上第一个实用的单晶硅光伏电池。同年,韦克尔发现砷化镓具有光伏效应,并在玻璃上沉积硫化镉薄膜,制成世界上第一块薄膜光伏电池。我国2010 年 12 月投入运行的大丰 20 MW 光伏电站,是目前全国最大的薄膜光伏电站,年发电量2 300 万 kW·h。
太阳能光伏电池的工作原理如图 1 所示。
在半导体中掺加杂质制成 PN 结,以形成在平衡状态时具有的内建电场,在该内建电场的作用下分离由外界激发而生成的过剩载流子,从而形成外部电压。在光照条件下,半导体中的电子吸收光子能量从价带跃入导带,形成电子———空穴对,成为载流子。生成载流子所需要的最低能量是半导体的禁带宽度 Eg,使用禁带宽度较小的材料制作的太阳能电池可以形成较大的电流。
基于单晶硅的第一代光伏电池是目前太阳能光伏电池市场的主流,其光电转换率已达 24. 7%; 基于薄膜技术的第二代光伏电池的光电转换效率已达到16. 5% ~ 18. 8% 。由于薄膜光伏电池大大减少了半导体材料的消耗,因此具有很好的发展前景。应该指出,光伏电池在光电转换过程中,光伏材料既不发生任何化学变化,也不产生任何机械磨损,因此太阳能光伏电池是一种无噪音、无气味、无污染的理想清洁能源。2006 年,我国太阳能电池生产总量首次达到400 MW,从而超过美国成为全球第三大生产国,也是世界上发展最快的国家。
1. 2 太阳能光伏电站
太阳能光伏电站是将若干个光伏转换器件即光伏电池封装成光伏电池组件,再根据需要将若干个组件组合成一定功率的光伏阵列,并与储能、测量、控制装置相配套,构成太阳能光伏电站。
太阳能光伏电池具有很大的灵活性,不仅可以用其建设零星规格的电站,而且可以组成应用于小型、分散电力用户的太阳能光伏发电系统。这种独立运行的太阳能光伏发电系统称之为离网型太阳能光伏发电系统。
由于受昼夜日照变化及天气的影响,离网型光伏发电系统通常需要和其他电源形式联合使用,比如柴油发电机组以及蓄电池组,从而增大了电站的投资和维护费用。离网型光伏发电系统往往建在距离电网较远的偏远山区及荒漠地带,向独立的区域用户供电。西藏措勒 20 kW 光伏电站是我国建设较早的离网型光伏电站,总投资 290 万元,1994 年 12 月正式投产发电。
离网型太阳能光伏电站系统如图 2 所示。
电站的发电系统由太阳能光伏电池方阵、蓄电池组、直流控制器、直流 - 交流逆变器、交流配电柜和备用电源系统( 包括柴油发电机组和整流充电柜) 等组成。其工作原理为太阳能光伏电池方阵经过直流控制柜向蓄电池组供电,并根据需要整定蓄电池组的上限和下限电压,由直流控制柜自动控制充电。蓄电池组通过直流控制柜向直流 - 交流逆变器供电,经逆变器将直流电变换成三相交流电,再通过交流配电柜以三相四线制向用户供电。当蓄电池组的电压下降到下限电压时,为不造成蓄电池组的过渡放电,直流控制柜将自动切除其输出电路,使直流 - 交流逆变器停止工作。柴油发电机组为电站的备用电源,必要时由备用电源通过整流充电柜向蓄电池组充电,或在光伏发电系统出现故障及停运时直接通过交流配电柜向用户供电。直流 - 交流逆变器和柴油发电机组不能同时向用户供电,为此必须在交流配电柜中设置互锁装置以保证供电电源的唯一性。
当太阳能光伏电站的容量达到一定规模时,还可与电网相联,即所谓的并网型光伏电站。这时,如果本地负荷不足,则可将多余的电能输送给电网。当本地太阳能发电量不足时,则由电网向用户提供电能。因此,并网型光伏电站可以不需要使用蓄能装置,减少系统投资和维护费用。同时由于与电网的互济,提高了发电设备的利用率和供电用电的安全可靠性,是大规模开发太阳能发电技术的必然趋势。我国第一座并网型光伏电站是 2006 年建成投运的西藏羊八井可再生能源基地 100 kW 高压并网光伏电站。2010 年底全国首个光伏并网发电项目敦煌 2 ×10 MW 光伏发电项目建成投产。
四、结论与展望
本文从全球和我国的能源现状出发,分析说明了新能源发电技术是当前迫切而有实际价值的研究课题,进而具体介绍了风力发电系统和燃料电池发电系统的特点以及我国在这两个方面的发展现状。新能源不仅仅指风能和燃料电池,还包括生物质能、海洋能、地热能和光伏电池等。我国乃至全世界的新能源发电技术发展的潜力都是巨大的。在人类明天的舞台上,新能源将取代化石燃料,扮演重要的角色。
参考文献:
[1] 徐德鸿 . 新能源电力电子导论 [D]. 杭州 : 浙江大学 ,2009.
[2] 郝伟, 舒隽, 张粒子. 新能源发电技术综述 [C].华北电力大学第五届研究生学术交流年会 ,2007.
[3] 施涛.燃料电池发电系统的建模与仿真 [D].南京:东南大学,2007:5-6,63-64.
点击下页还有更多>>>浅谈新能源技术论文
随着经济的快速增长,风电技术也在不断的改善,给人们的生活带来了许多方便.下面我整理了风电技术论文3000字,欢迎阅读!
促进风电发展的技术解决方案
【摘要】随着经济的快速增长,风电发展的技术也在不断的改善,给人们的生活带来了许多方便,但是,随着技术的发展,在风电发展这方面发现了许多的问题需要解决,本文就从促进风电发展的技术解决方案这方面来研究研究。
【关键词】风电发展;技术解决方案
中图分类号:X703文献标识码: A
一、前言
促进风电发展的技术解决方案是我国面临的一个重大的课题,在我国社会水平的发展,科学技术也在不断的发展,所以,在以后的日子中,需要科学技术人员在促进风电发展的技术解决方案这个方向做出很大的付出。
二、影响海上风力发电技术方面的因素
1、风资源评估
风资源评估是风电场开发建设的首要步骤,是进行风场选址、机位布局、风机选型、发电量估算和经济概算的基础.在宏观分析选址上,根据当地的气象部门的统计数据,获得辽宁沿海的几个城市的气象特征分别如见表1、图1所示.
表1辽宁省部分沿海城市风资源情况
营口、盘锦、大连、锦州等地区按照风能资源上分处于风能丰富区和风能较丰富区,并且临海处于渤海湾内,风速平稳、风浪较小,从宏观风资源角度上看非常适合海上风资源的开发,若要进一步的微观选址则需要建立一整套完整的测风系统以获得准确的技术数据.
2、海床考察与基础建设
海床的条件直接关系到基础采用的形式,基础的成本目前占单机总成本的19%,并且不同情况下的使用环境、造价都是不同.对于我国海上风力发电机基础,通常采用4种基础形式:单桩基础、三脚架或多支架基础、沉降基础和浮运式基础.其使用海域范围如图2所示.
图2根据水域深度海上风力发电机基础应用范围的划分
其中的单桩基础适于浅水、滩涂,并且安装简便,但是不能移动,不适合软海床.三角架或多支架基础适合于水深30m以上的水域,其基础非常坚固,但费用昂贵,很难移动,也不适合软海床.而沉降基础适用于深度不太大的软海床海区,并且安装方便,但海床表面不平时需要进行平整处理,建造费用高.浮运式基础适合于50m以上的水深,其本质就是一艘发电船,并且只适合深海域.辽宁沿海风速平稳,海床下降平缓,海床地质相对坚硬,比较适合应用单桩基础.
三、我国风电发展应重视的问题
1、风电规划过于粗放
(1)风电项目地方建设规划与全国整体规划衔接不够。各地区在开发规划风电基地时,主要是依照当地风能资源情况制定风电的规划规模和建设时序,而很少考虑电力系统的电源结构、电网输电能力、风电消纳市场等因素。各地政府确定的风力发电规划远远大于国家总体规划,使风电项目的规划发展没有体系性和衔接性,而且“十一五”以来,我国风电发展标准多次修改,对风电产业的总体指导性作用不能很好的体现。
(2)风电项目发展与水煤等其他电源规划协调不够。由于风能资源具有间歇性、随机性和不可控等特征,因此风力发电就不可避免的具有着随机和局部反调峰的这种特性,对系统的安全运行带来许多影响。电网系统能够消纳风力发电的规模大小,主要因素在于整个系统的合理规划程度和资源的优化配置情况。国外发达国家的水油气电源比重较高、系统调峰能力充裕,而我国则恰好相反,我国的情况是富煤缺油少气,在目前的电源结构中,煤电装机容量占到全国总装机容量的75%以上。水力发电中大部分是径流式电站、在丰水期是不能够进行调峰的,而核电站目前不参与调峰,因此整个电力系统的调峰能力严重不足,导致我国大部分地区电网的风电消纳能力受到限制。
(3)风电开发与电网规划建设配套不够。我国陆地可开发利用的风能资源主要集中分布在东北、西北、华北北部这“三北”地区,技术可开发量占到全国陆地风能总量的95%以上,我国风能资源基本上与用电负荷逆向分布。在风能富裕集中的“三北”地区,电网建设规模相对较小、且用电负荷有限,风电出力很难就地消纳。这与欧美等西方发达国家“小规模、分布式,低电压、就地接入”的风电发展方式显著不同,由于我国特有的地理、气候等因素制约,我国的风电开发不可避免的具有“大规模、集中开发,远程输送”特性,这就面临着更加复杂的技术挑战。风电的大规模开发必须依托坚强、灵活的电网来实现,且电网的建设周期相对与风电项目要长,因此风电和电网的规划和建设必须相互兼顾、配套开发,不能出现脱节现象。而当前,各地的风电项目规划不参照当地的电网建设计划和进度进行,使建好的风电场无法完全、稳定的接入电网,存在不协调情况。
四、风电前景展望
1、保守模式
这种模式假设中国风电按照常规方式发展,风机质量及供应能力基本保持目前的发展水平。在该模式下,减排温室气体压力不大,且中国风电发展还存在较多的限制性因素,电网建设落后于风电建设速度,电网瓶颈问题未得到有效解决,风电产业的总体投入相对较少,使得风电产业发展一般。这样在 2020 年前后,风电发展依旧比较缓慢;之后,一些问题得到初步解决,2030年以后,风电产业开始快速发展。若以这种发展模式进行,根据我国《新型能源产业发展规划》报告预计,2020 年之前我国风电年新增装机容量将保持在 GW 左右,累计装机容量将达到150 GW;之后,年新增装机容量保持在 1 GW,并于 2030、2040 和2050 年分别实现累计装机容量 250 GW、350 GW 和 450 GW。
2、乐观模式
这种模式考虑到目前中国风电资源潜力、环境约束、社会总成本等因素,考虑到政府发展目标和产业发展水平,同时假设开发商对目前的风电市场充满信心。在该模式下,中国风电发展存在的问题将得到有效解决,如电网瓶颈问题初步消除、风电价格体制进一步完善、风电设备攻关技术取得进展等。中国风电产业各时间段发展较为均衡,风机制造业和风电市场开发保持合理的速度,电力和电量输送能力基本满足风电发展需求,电力系统具备一定的调度运行能力,中国风力资源得到较充分的开发。这种模式是一种平衡、稳健的发展模式,接近现实发展水平。若以这种发展模式进行,根据我国《新型能源产业发展规划》报告预计,2020 年我国风电累计装机容量将达到 200 GW,占世界装机容量的 20%,年发电量实现 440 TW・h,创收 2 500 亿人民币。2020 年之后,年新增装机容量保持在 1 GW,并于 2030、2040 和2050 年分别实现累计装机容量 200 GW、400 GW 和 500 GW。
3、积极模式
这种模式充分考虑了温室气体的减排压力,国家加大投资力度,积极推进技术研发能力,使得产业发展和基础研发同步提高,电网建设和区域连接得到充分解决,电力系统具备灵活的调度能力;同时国家积极推出各项风电产业激励政策,法律条款能够运行到位,有效解决了各利益主体间的关系。国家发展目标与风电发展速度达到一致,配套的风电服务业也得到新的提升和快速发展。在该模式下,风电发展呈现高速发展趋势,风机制造和市场开发保持快速发展,电网技术、电力系统技术和风电应用技术有了质的突破,风电在电力结构中的比例迅速增长。这种模式是一种超前发展模式,若以这种发展模式进行,根据我国《新型能源产业发展规划》报告预计,2020 年前,我国风电年新增装机容量保持在 GW 左右,累计装机容量将达到 230 GW,之后,年新增装机容量保持在 GW,并于 2030、2040 和 2050 年分别实现累计装机容量 380 GW、530 GW 和 680 GW。
五、政策层面的解决策略
1、加强需求侧管理,推动风电多样化利用由于目前储热技术的成本远低于储电成本,为充分利用低谷风电,丹麦大部分终端用户配备了电锅炉、热泵等电采暖设备,将低谷剩余的风电转化为热能供暖,有些还通过储热装置,变储电为储热,大大减少了低谷弃风。我国风力资源多集中在东北和西北这些冬季采暖期长、采暖负荷较大的地区,如果将风电场的建设与地区供热结合,在原有供热锅炉的供热区域或新增的供热区域,试点电采暖,对于提高风电消纳、减少煤炭消耗都具有重要意义。结合用户侧电力需求管理,推动风电多样化利用,积极探索用户侧利用低谷电能的方式,也是提高风电利用率的重要途径。
2、积极开展风电低谷电价试点
充分调动更广泛的电力需求侧资源的关键在于电价激励。国外风电大国依托其成熟的电力市场,充分发挥风电运营成本低的优势,实现了风电的充分消纳。随着我国风电规模的扩大,低谷风电弃风限电问题日益突出。我国可借鉴西班牙、丹麦的风电电价模式,遵循不打破现行上网电价体系、衔接现行风电标杆上网电价的基本原则,试点风电低谷上网电价。初步考虑,风电低谷上网电价由 2 个部分构成:一部分为政府补贴电价(即当地火电机组脱硫标杆电价与当地所属风资源区风电并网标杆电价的差价),维持不变;另一部分为低谷电价,可根据低谷风电特定用途倒算,如采用低谷风电供电锅炉采暖的,可按不高于采用燃煤锅炉采暖成本倒算,也可采用风电边际电量成本计算。
六、结束语
综上所述,就促进风电发展的技术解决方案这方面而言,为了找到促进风电发展的技术解决方案,科学技术人员不仅在技术方面努力,还得总结以前的不足加以改正,解决存在的问题也会是一大进步。
参考文献
[1]于晗 基于概率的含风电场电网的输电系统规划方法研究 华北电力大学2008(5):02-05
[2]刘威 赵渊 周家启 计及风电场的发输配电系统可靠性评估 电网技术 2008 (13) :69-74.
[3]孔维政 美国风电发展面临四大挑战 风能 2013 (1):36-40
[4]苏晓娟 德国风电发展新趋势与投资分析 风能 2012 (6):58-64
点击下页还有更多>>>风电技术论文3000字
148 浏览 3 回答
154 浏览 5 回答
353 浏览 3 回答
88 浏览 3 回答
193 浏览 3 回答
293 浏览 5 回答
170 浏览 3 回答
335 浏览 4 回答
130 浏览 4 回答
325 浏览 4 回答
309 浏览 2 回答
327 浏览 2 回答
344 浏览 2 回答
139 浏览 2 回答
341 浏览 2 回答