数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
虽然不太明白什么意思,还是靠我的理解给你写一篇吧.(我是按学生写的,你应该不是老师吧)小学6年级数学小论文小学的学习即将结束,我对小学数学也有了一些了解,在此篇论文中做一下总结.小学数学主要是奠定数学的一些最基础的概念,除了基本正有理数运算外,有两个主要部分,一是图形或几何体体积、面积的求解以及性质,即几何部分;二是一次方程以及其实际应用,即代数部分.下面我将依次说明.几何部分.几何是数学中一个重要分支,在小学,我们学习了一些几何公式,像三角形:C△=三角形三边之和S△=底×高÷2平行四边形:C=四边之和S=底×高圆形:C=2πrS=πr²立方体(长方体):S=六面面积之和V=底面积×高圆柱体:S=S侧+2S底V=S底×高还学会了一些几何性质,如平行四边形对边相等,有一个角是直角的平行四边形是矩形,圆柱体的侧面展开是一个长方形等,这些性质加深了我们对几何图形的理解,让我们能够根据这些性质解决一些简单的几何问题,并理解几何的一些公式.代数部分.代数是贯穿整个数学的思想,在小学,我们学习了正有理数的一些基本运算,还学习了一元一次方程与二元一次方程的列与解,简单了解了移项,合并同类项等一些基本解方程地方法,并能够利用方程解决一些实际问题,这些都是为今后高次方程与函数奠定的基础.这些是我们在6年学习的一些主要数学知识,我们应记牢小学中学过的知识,以便今后更深入的研究.
高斯的小故事
、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” 老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050 2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯的故事告诉我们什么急
每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹
高斯的故事50个字。
高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。
高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
(3)高斯的故事和感悟扩展阅读:
为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。
但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。
高斯试图在汉诺威公国的大地测量中,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在。高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基用德文写了《平行线理论的几何研究》一文。
这篇论文的发表引起了高斯的注意。他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。
高斯的故事
1、高斯是位犹太人,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
2、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
3、在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。
4、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。
5、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。
6、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。
7、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
8、1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。
9、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。
(4)高斯的故事和感悟扩展阅读:
1、高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。
2、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。
3、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。
高斯的故事
1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” 老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050 2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯的故事,350字
关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了答案。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。
小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。
小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。
高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。
值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。
(6)高斯的故事和感悟扩展阅读
高斯被认为是世界上最重要的数学家之一,并有“数学王子”的美誉。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。
高斯的故事
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课。老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教变得很熟,而助教的能力也比老师高得多,他教了高斯更多更深的数学。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1792年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」、质数分布定理、及算术几何平均。 1795年高斯进入哥廷根大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。这个方法--虽然他当时没有公布--就是「最小平方法」 。 1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 ,涵盖一部分现在大学念的「微分几何」 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。 在1855年2月23日清晨,高斯在他的睡梦中安详地去世了。
高斯的故事
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于格丁根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并有“数学王子”的美誉。 1792年,15岁德高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入格丁根大学。1796年,17岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。 1855年2月23日清晨,高斯于睡梦中去世。 生平 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 格丁根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁其便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入格丁根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。 高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子Joseph。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为格丁根大学的教授和当地天文台的台长。 虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。 高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896)、Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在格丁根逝世,享年95岁。高斯于1855年2月23日凌晨1点在格丁根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。 贡献 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Plaoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。 日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。他独自提出不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类理智,也不能给予人类理智以这种证明。但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。后来相对论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Insel *** erg--格丁根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议格丁根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。 高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。 高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯已将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和格丁根大学图书馆已经将高斯的全部著作数字化并置于互联网上。 高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
关于数学家高斯故事的感受作文150字
1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师回出了一道算答术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” 老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050 2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯的故事
高斯小时候的故事 两百多年以前,一位9岁小孩的数学天才使他的老师大吃一惊。 1787年,在德国一所乡村小学的三年级课堂里,数学老师出了一道计算题: 1+2+3+4+5+…+98+99+100。 把100个数一个一个地加起来,这件事让三年级的小同学来做,是一种考验。 不料,老师刚说完题目,班级里的一位学生,名叫高斯,就把他写好答案的小石板交上去了。 起初老师毫不在意。这么快就交来,谁知道写了些什么呢? 后来发现,全班只有一个人做对,就是这位飞快交卷的高斯。 高斯解答的方法更使老师惊讶不已。 高斯把这100个数从两头往中间,一边取一个,配起对来,1和100,2和99,3和98,…,共计配成50对,每一对两个数相加都等于101,因而原式=101×50=5050。 这种算法虽然不是小高斯首创,但是事先谁也没有教过他。在两百多年前的德国,这样的计算方法是在大学里讲授,叫做等差级数求和。即使在科学技术突飞猛进的今天,等差级数求和也要到高中数学课里才系统地学习。当年只有9岁的高斯,出身农户,家境贫寒,居然这样勤于动脑,善于动脑,使老师无比欣慰和深受感动。老师名叫彪特耐尔,特意到大城市汉堡买来数学书,送给高斯看,并且请自己的年轻助手巴特尔斯对高斯多多关照。 后来高斯继续勤奋学习,刻苦钻研,在数学、天文学和物理学中作出许许多多重大贡献,被称为“数学家之王”,和阿基米德、牛顿齐名。高斯是数学史上一颗光芒永恒的天王巨星。
问题一:高斯发现了什么? 卡尔・弗里德里希・高斯 独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 贡献 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。 谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”(Ceres)对它命名,称为谷神星(Planetoiden Ceres),并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。 为了获知每年复活节的日期,高斯推导了复活节日期的计算公式。 1818年至1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论直至现在仍有应用的价值。 汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点的大地坐标。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。[来源请求]但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken――Thuringer Wald的Insel *** erg――哥廷根的Hohen Hagen三......>> 问题二:高斯奥特曼什么时候被发现的 倒数第三集或第四集被风吹发现 最后第二集大家都知道武藏就是高斯 问题三:高斯一生有什么成就 历史贡献高斯分布 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 数学上的成就 高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的激般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,......>> 问题四:高斯当时解决了什么数学难题 1796年高斯19岁,发现了正十七边形的尺规作图法,解决了自欧几里德以来悬而未决的一个难题。同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 欧几里德已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。 这些关於数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年(发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。 高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。 不久就有人推测U这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关於它的所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。他逐渐得出革命性的结论U确实存在这样的几何学,其内部相容并且没有矛盾。但因为与同代人的观点相背,他不敢发表(参阅非欧几里得几何条)。 当1830年前后匈牙利的波尔约(Janos Bolyai)和俄国的罗巴切夫斯基独立地发表非欧几何学时,高斯宣称他大约在30年前就得到同样的结论。高斯也没有发表特殊复函数方面的工作,可能是因为没有能从更一般的原理导出它们。因此这一理论不得不在他死后数十年由其他数学家从他著作的计算中重建。 1830年前后,极值(极大和极小)原理在高斯的物理问题和数学研究中开始占有重要地位,例如流体保持静止的条件等问题。在探讨毛细作用时,他提出了一个数学公式能将流体系统中一切粒子的相互作用、引力以及流体粒子和与它接触的固体或流体粒子之间的相互作用都考虑在内。这一工作对於能量守恒原理的发展作出了贡献。从1830年起高斯就与物理学家威廉・爱德华・韦伯密切合作。由於对地磁学的共同兴趣,他们一起建立了一个世界性的系统观测网。他们在电磁学方面最重要的成果是电报的发展。因为他们的资金有限,所以试验都是小规模的。 天文发现 1801天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。 1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗如今被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。 我们知道它是火星和木星的小行星带中的一个,当时天文学家无法确定这颗新星是彗星还是行星,必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯也对这颗星着了迷,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。 果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法”。在天文学中......>> 问题五:高斯的故事告诉我们什么?急 ? 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天攻的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 每个人都有天赋的,高斯是在数学方面,只有发现了自己的天赋和兴趣才能创造奇迹 问题六:高斯的故事有哪些 高斯(Johann Carl Friedrich Gau? (Gauss)听 文件-播放,1777年4月30日-1855年2月23日),生于不伦瑞克,卒于格丁根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并有“数学王子”的美誉。 1792年,15岁德高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入格丁根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。 1855年2月23日清晨,高斯于睡梦中去世。 生平 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。[来源请求]能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁其便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入格丁根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。 高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子Joseph。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为格丁根大学的教授和当地天文台的台长。 虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。 高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896)、Wilhelm (1813-1883) 和 Therese (181......>> 问题七:高斯怎样发明高斯定理? 10分 高斯一次上数学课的时候,老师出了一道数学题,题目如下: 1+2+3+4+5+9+7+8+9+10+.....+100,要同学们算出答案。 同学们就埋头算起来,唯独高斯迟迟没动笔,可他发现1+100=101,2+99=101,耽共有50个101的规律用50*101等于5050,不到几分钟就算出结果,高斯从中明白一个规律。从而发明了这个定理, 因是他发明的。为了纪念他,就命为“高斯定理”。
178 浏览 2 回答
167 浏览 4 回答
340 浏览 4 回答
358 浏览 6 回答
357 浏览 4 回答
208 浏览 5 回答
137 浏览 3 回答
183 浏览 3 回答
244 浏览 4 回答
162 浏览 5 回答
167 浏览 3 回答
86 浏览 4 回答
223 浏览 6 回答
167 浏览 3 回答
206 浏览 3 回答