数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
偶们今天数学文化节考的论文题目是“圆”,围绕着圆写一段文章; 偶也再顺便帮你想两个题目(偶也是初一的噢): 初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 现在中考网的初二学员中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。 那怎样才能打好初一的数学基础呢? (1)细心地发掘概念和公式 很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。 2)总结相似的类型题目 这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 我们的建议是:“总结归纳”是将题目越做越少的最好办法。 (3)收集自己的典型错误和不会的题目 同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。 我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。 (4)就不懂的问题,积极提问、讨论 发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。 讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。 我们的建议是:“勤学”是基础,“好问”是关键。 (5)注重实战(考试)经验的培养 考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。 我们的建议是:把“做作业”当成考试,把“考试”当成做作业。 以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。 有理数(什么是有理数;有理数的几种分类方法;有理数在生活中的体现……) 数轴(什么是数轴;数轴可以干哪些事;在生活中数轴有什么用处……) 棱柱(棱柱的定义;生活中何处可以见到棱柱;棱柱有哪几种类别……) 棱锥(同上); 七巧板(七巧板是如何形成的;七巧板的妙用;用七巧板可拼出多少个凸多边形,如何证明……); 三视图(不同情况下的三视图……)
这是原原本本的一篇关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。(例略)2.亲身体验法如讲逆水行船与顺水行船问题。有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。同时讲清:顺水行船的速度,等于船在静水中的速度加上水流的速度;逆水行船的速度,等于船在静水中的速度减去水流的速度。3.直观分析法如浓度问题,首先要讲清百分浓度的含义,同时讲清百分浓度的计算方法。其次重要的是上课前要准备几个杯子,称好一定重量的水,和好几小包盐进教室,以便讲例题用。如:一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐多少呢?分析这个例题时,教师先当着学生的面配制15%的盐水200克(学生知道其中有盐30克),现要将15%的盐水200克配制成20%的盐水,老师要加入盐,但不知加入多少重量的盐,只知道盐的重量发生了变化。这样,就可以根据盐的重量变化列方程。含盐20%的盐水中,含盐的总重量减去原200克含盐15%的总重量,就等于后加的盐重量。即设应加盐为x克,则(200+x)×20%-200×15%=x解此方程,便得后加盐的重量。
如何学写数学小论文“ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。(1) 写什么写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如:一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如:分式“家族”中的亲缘探究如:纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如:“没有条件”的推理如:小议“黄金分割”如:奇妙的正五角星(2) 怎样写① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。例子:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。回答者: 谢昊笑 - 一级 2010-1-26 21:01目前解题技巧类的不新颖了,关于教改和养成理念方面的较好。初一的论文重点放在学生习惯的培养上,虽然是老问题,但是写的前卫点,还是很吸引人的。我给你建议一个标题,你自己准备素材和内容吧。《如何在数学课堂教学中培养学生的主体意识》回答者: taiyangcao2006 - 一级 2010-1-27 02:57利用“想一想”,开发学生的思维、培养学生的学习兴趣。新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。如,在七年级数学第一章节中加入了"丰富的图形世界",从学生能看得见摸得着的实际物体出发,“想一想”引导学生动脑、并使学生进入了初中数学的一片新天地。在教学过程中,作为课程的执行者,我们应该对此加以强化。要善于运用幽默的语言、生动的比喻、有趣的例子、别开生面的课堂情境,激发学生的想的欲望。在教七年级数学“几何体”部分时,鼓励学生深入到生活中去寻找或制作教材中的几何体并拿到课堂上来。在寻找的过程中多想一想,学生就开始对几何图像有了感性的认识。当学生寻找、制作的东西成为课堂上的教具时,学生兴趣高涨,教学效果远比教师拿来现成的教具要好得多。又如七年级的“正方体的表面展开”这一问题,答案有多种可能性,此时,我们应给学生提供一个展示和发挥的空间,让学生自己制作一个正方体纸盒,再用剪刀沿棱剪开,展成平面,并用“冠名权”的方式激励学生去探索更多的可能性。在操作过程中,要求学生多想一想,不要习习惯性地只求一个答案。这样,不仅能开发学生的思维,调动了学生的积极性,而且也增强了学生的自信心,课堂上学生积极主动、兴趣盎然,无形中营造了一个活泼热烈、充满生命活力的教学氛围中学数学教学从“知识传授”的传统模式转变到“以学生为主体”的实践模式,着眼于数学思想方法的渗透和良好的思维品质的养成,注重学生创新精神和实践能力的培养,这既是实施素质教育的要求,也是新教材的精髓所在。利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。对此,我们不能轻易地进行否定,而应该多试一试,应该从创新教育的角度出发,创造性地去理解和使用新教材。如,七年级数学"绝对值"这一节的习题中提到“|a|”的问题,因为在此之前并未学习字母能表示数,所以学生难以理解。对于这个问题的处理有两种方法,一是可以把这部分题目挪到下一章去做;二是引导学生对a选取不同的值试一试,从这些不同的结果中去想、去探索、去归纳;三是从绝对值的概念出发,利用数轴求有多少个点到原点的距离等于|a|.第一种方法采取了回避困难的态度,这样做不利于学生良好的意志品质的养成,有悖于新教材的宗旨。我们应当选择第二或第三种方法,在尝试过程中激发学生的探索兴趣,培养学生独立解决问题的能力。又如七年级的“队列操练中的数学趣题”可以让学生自已动手编成小品,记下每一次的结果,通过试一试学会用数据说话,并能在乐趣中进一步认识到数学是有用的,可以用数学来解决一些实际问题,让学生更愿意去想、去试、去探索。总之,在课堂教学中,我们应积极主动地对课程进行适当的修正和调适,灵活使用新教材,设计出新颖的教学过程,把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发他们的进取心。利用新教材中安排“读一读”“想一想”、“做一做”、“试一试”等内容,我们可以用这种富有弹性的课程设置,结合学生智力发展水平和发展要求的个体差异,有针对性地实施因材施教;利用新教材相对较为宽松的课时安排,选择更为合适的时机和内容,开展更多的社会实践活动,让学生将所学知识应用于生活,从“读”、“想”、“试”、“做”中体会数学的快乐;还可以通过多种方式将科学技术发展的新成果、新动向和新趋势,及时地应用在教学活动中,进一步体现数学的实用性等等。在人才竞争日趋激烈的21世纪,在创新教育蓬勃开展的今天,社会对新教材充满了期望,学生对教师充满了期待。相信,在广大园丁的努力配合下,充分利用读、想、试、做等栏目,新教材必将如新世纪第一缕和熙的阳光,照耀着我国教育较为欠缺的创造性快快成长,让那些充满灵性的心智焕发出无限的创造力。
利用“想一想”,开发学生的思维、培养学生的学习兴趣。 新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。如,在七年级数学第一章节中加入了"丰富的图形世界",从学生能看得见摸得着的实际物体出发,“想一想”引导学生动脑、并使学生进入了初中数学的一片新天地。在教学过程中,作为课程的执行者,我们应该对此加以强化。要善于运用幽默的语言、生动的比喻、有趣的例子、别开生面的课堂情境,激发学生的想的欲望。在教七年级数学“几何体”部分时,鼓励学生深入到生活中去寻找或制作教材中的几何体并拿到课堂上来。在寻找的过程中多想一想,学生就开始对几何图像有了感性的认识。当学生寻找、制作的东西成为课堂上的教具时,学生兴趣高涨,教学效果远比教师拿来现成的教具要好得多。又如七年级的“正方体的表面展开”这一问题,答案有多种可能性,此时,我们应给学生提供一个展示和发挥的空间,让学生自己制作一个正方体纸盒,再用剪刀沿棱剪开,展成平面,并用“冠名权”的方式激励学生去探索更多的可能性。在操作过程中,要求学生多想一想,不要习习惯性地只求一个答案。这样,不仅能开发学生的思维,调动了学生的积极性,而且也增强了学生的自信心,课堂上学生积极主动、兴趣盎然,无形中营造了一个活泼热烈、充满生命活力的教学氛围中学数学教学从“知识传授”的传统模式转变到“以学生为主体”的实践模式,着眼于数学思想方法的渗透和良好的思维品质的养成,注重学生创新精神和实践能力的培养,这既是实施素质教育的要求,也是新教材的精髓所在。 利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。 在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。对此,我们不能轻易地进行否定,而应该多试一试,应该从创新教育的角度出发,创造性地去理解和使用新教材。如,七年级数学"绝对值"这一节的习题中提到“|a|”的问题,因为在此之前并未学习字母能表示数,所以学生难以理解。对于这个问题的处理有两种方法,一是可以把这部分题目挪到下一章去做;二是引导学生对a选取不同的值试一试,从这些不同的结果中去想、去探索、去归纳;三是从绝对值的概念出发,利用数轴求有多少个点到原点的距离等于|a|.第一种方法采取了回避困难的态度,这样做不利于学生良好的意志品质的养成,有悖于新教材的宗旨。我们应当选择第二或第三种方法,在尝试过程中激发学生的探索兴趣,培养学生独立解决问题的能力。又如七年级的“队列操练中的数学趣题”可以让学生自已动手编成小品,记下每一次的结果,通过试一试学会用数据说话,并能在乐趣中进一步认识到数学是有用的,可以用数学来解决一些实际问题,让学生更愿意去想、去试、去探索。 总之,在课堂教学中,我们应积极主动地对课程进行适当的修正和调适,灵活使用新教材,设计出新颖的教学过程,把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发他们的进取心。利用新教材中安排“读一读”“想一想”、“做一做”、“试一试”等内容,我们可以用这种富有弹性的课程设置,结合学生智力发展水平和发展要求的个体差异,有针对性地实施因材施教;利用新教材相对较为宽松的课时安排,选择更为合适的时机和内容,开展更多的社会实践活动,让学生将所学知识应用于生活,从“读”、“想”、“试”、“做”中体会数学的快乐;还可以通过多种方式将科学技术发展的新成果、新动向和新趋势,及时地应用在教学活动中,进一步体现数学的实用性等等。 在人才竞争日趋激烈的21世纪,在创新教育蓬勃开展的今天,社会对新教材充满了期望,学生对教师充满了期待。相信,在广大园丁的努力配合下,充分利用读、想、试、做等栏目,新教材必将如新世纪第一缕和熙的阳光,照耀着我国教育较为欠缺的创造性快快成长,让那些充满灵性的心智焕发出无限的创造力。
建议你用“论数学对称之美”为题目写一篇论文,举例可以用数字的对称性,图形的对称性等来写,完了再谈谈自己的感受就可以了。
225 浏览 3 回答
324 浏览 3 回答
171 浏览 3 回答
151 浏览 4 回答
203 浏览 6 回答
180 浏览 5 回答
244 浏览 4 回答
156 浏览 4 回答
136 浏览 3 回答
278 浏览 4 回答
355 浏览 3 回答
282 浏览 3 回答
94 浏览 8 回答
356 浏览 4 回答
96 浏览 7 回答