本文作为OC-SORT的论文阅读记录,中间可能会加入自己的看法,由于是tracking这块的初学者,文中若有错误的认识麻烦读者帮忙修正。
OC-SORT是来自 CVPR2022 的一篇文章,采用的范式是MOT中的TBD(Tracking by Detection)。虽然学术界中JDE的研究越来越多,2022年开始也有很多基于Transformer的方法效果非常不错,但是目前工业界还是使用TBD这种方式比较多,类似还有Bytetrack等等,基本都可以满足跟踪的需求。
TBD范式中比较出名的一系列就是SORT系列,这其中笔者了解的有最初的鼻祖SORT,还有后期衍生出来的DeepSORT, StrongSORT, StrongSORT++, ByteTrack,还有本文要讨论的OC-SORT。
关于SORT系列方法具体解析可以参考下面的博客和帖子,个人认为写的很详细和易懂,方便随时查阅:
通过回顾SORT方法,作者提出三个问题作为方法设计的动机:
文章提出三项改进:
这种在线平滑方式通过当前帧检测到的结果和之前帧的轨迹位置,来生成更多的虚拟点,以此辅助KF做预测。具体通过⼀个虚拟的轨迹对参数进行在线平滑,回溯到目标检测丢失的时候,可以修复在时间间隔内累积的误差。
在计算IOU度量矩阵的时候,把速度/方向计算成代价矩阵放在原来的度量矩阵中,(个人理解类似模型训练的trick):
这部分看的不是很懂…
OCR用于恢复轨迹,这部分依赖于检测值而不是错误的估计值。当轨迹丢失后检测目标再出现时,直接将丢失轨迹时检测值和重新出现的检测值相关联以恢复轨迹。