例谈中学概率统计教学中数学史的运用 3 挖掘史料,让学生体会概率统计的思想方法 概率统计是中学数学新课程的重要组成部分,它研究随机现象的统计规律性,具有独特的概念、方法和理论.教学中应更多地关注实验与统计过程,结合史例,及早培养学生的随机思想和统计观念. 随机思想 随机思想的核心是认识隐藏在随机现象背后的统计规律性,强调随机现象的个别观察的偶然性与大量观察中的统计规律性之间的联系.必然性通过偶然性表现出来,偶然性背后总是隐藏着必然性,大量的随机现象正体现出事物发展过程中的必然性的一面.随机思想正是通过对这种偶然性的研究去发现其背后的必然性—即统计规律性,并通过这种必然性去认识和把握随机现象. 随机试验是随机思想中的一个重要方法,历史上为了研究随机现象呈现的统计规律性,进行过非常著名的随机试验,如蒲丰、皮尔逊等所做的掷硬币试验,高尔顿设计的高尔顿板试验模型等.例如,投掷硬币中,假如我们进行大量投掷,正面朝上的频率就非常接近一半,即正面朝上的理论概率为12,我们把这种个别结果不确定,但是多次重复之后,结果有规律的现象称为随机现象.“随机的”不是“偶然的”同义词,而是描述一种不同于确定性的秩序,概率统计是描述随机性和统计规律性的数学. 理解随机思想的关键是理解某一事件发生的试验频率与理论概率存在偏差,而且偏差的存在是正常的.虽然多次试验的频率渐趋稳定于其理论概率,但也不排斥无论做多少次试验,试验概率仍然是理论概率的一个近似值,而不能等同于理论概率.例如理论上事件“随意抛掷一枚硬币,落地后正面朝上”发生的概率为12,但试验100次,并不能保证恰好50次正面朝上,50次正面朝下.只要学生真正动手做试验,必能体会到这一点.事实上,做100次掷币试验恰好50次正面朝上,50次正面朝下的概率仅为C?50?100?(12)?100?≈? ?8%,远远低于投币二次有一次正面朝上的概率50%.教学中要防止学生把概率直觉地理解为“比率”,这样才算对某一事件发生的概率有较为深刻的认识. 随机思想还包括统计实验过程中抽样的随机性及模拟试验或随机抽样结果的随机性.只有学生认识到这一点,才能真正明白现实世界广泛存在的随机性,并主动地应用到生活中去.抽样的方法很多,但无论用什么方法抽样,都要坚持随机抽取的原则.这是避免人为的影响,保证样本客观、真实的基本要求. 统计推断思想 统计课程的核心目标是引导学生体会统计思维的特点和作用,体会统计思维与确定性思维的差异.例如,在运用样本估计总体的学习中,应通过对具体数据的分析,使学生体会到由于样本抽取具有随机性,样本所提供的信息在一定程度上反映了总体的有关特征,但与总体有一定偏差.另一方面,如果抽样的方法比较合理,样本的信息还是可以比较好地反映总体的信息.例如著名数学家拉普拉斯对伦敦、彼得堡、柏林和法国的男婴和女婴出生规律进行研究,得到的统计资料显示:10年间,男孩出生的频率在2243附近摆动;我国历次人口普查总人口性别构成数据,与拉普拉斯所得到的结果非常的接近. 科学家发现,不仅在人类社会生活中,在大自然中,生命的繁殖、进化也莫不服从概率统计规律.早在1843年,捷克修道士孟德尔首先通过研究豌豆的遗传规律为世人揭示了大自然的奥秘.由于豌豆的两种遗传基因在进入下一代的杂种细胞时,彼此分离,互不干扰,最后在生物传粉过程中随机组合,所以这个规律又称“分离定律”.后来孟德尔经过艰苦的探索又发现了两对性状不同的植株进行杂交时,不同对的遗传基因自由组合,而且机会均等,这就是孟德尔第二定律,也称“自由组合定律”.孟德尔发现的分离规律和自由组合规律实质上就是概率统计规律在遗传过程中的体现. 统计推断的过程不同于数学中的逻辑推理,是带有概率性质的一种推理方法,其依据是“小概率事件原则”.小概率事件原则认为:概率很小的事件在一次试验中是几乎不会发生的.如假设检验问题的解法便是统计推断思想的体现.对于某个假设,给定一小概率水平标准,通过对抽样数据进行整理、计算,如果结果使得一小概率事件发生了(这与小概率事件原则矛盾),我们作出拒绝接受原假设的推断;否则,认为原假设是可接受的.这种统计推断思想的实施使数理统计的实用性得到充分的展现.教学中可以利用药效检验等实例重点介绍统计推断思想. 4 运用概率模型史例,启发学生的创新意识 随机数学有很大一部分可以用概率模型进行描述,如有限等可能概型(古典概型)、伯努利概型、正态分布等.应用概率模型方法就是根据随机问题的具体特点,模拟建构一个随机问题的现实原型或抽象模型,借以反映问题的内在规律,然后 选择相应的数学 方法对 求得的数学模型作出解答,表现出从实践到理论又回到实践的过程.概率统计教学中应重视对概率模型的理解和应用,淡化繁杂的计算,使学生经历从多个实例中概括出具体的概率模型的过程,体会这些例子中的共同特点,培养学生识别模型的能力.美国普渡大学统计学教授大卫.s.莫尔曾经这样论述道:“学习组合学并不使我们增进对机遇概念的理解,也不比其他学科更能发展使用概率建模的能力.在大多数情况下,应该避免组合问题,除非是最简单的计数问题”.使用概率模型解决问题是归纳思维的一种典型方式,它离不开人们的观察、试验与合情推理,是数学化意识和思想方法的体现,有助于培养学生将数学理论应用于解决实际问题的能力和创新意识. 数学史在展现随机数学知识发展过程的同时,数学家也常给后人在数学方法的运用和解决实际问题的创新思维方面带来启示,例如利用概率模型求 π就是典型的史例,一部计算圆周率的历史,被誉为人类“文明的标志”.1872年英国学者威廉.向克斯已把 π的值算到了小数点后707位.此后半个多世纪,数学家法格逊对向克斯的计算结果产生怀疑,法格逊的疑问是基于以下奇特的想法:在 π的数值中,大约不会对一两个数码存有偏爱,也就是说各数码出现的概率都应当等于110.随着电子计算机的出现和应用,计算 π的值有了飞速进展,1973年,法国学者让.盖尤与芳旦娜小姐合作,对 π的前一百万位小数中各数码出现的频率进行了有趣的统计得出的结论是:尽管各数字出现也有某种起伏,但基本上平分秋色.看来,法格逊的想法应当是正确的,在 π的数值展开式中有: P(0)=P(1)=P(2)=…=P(9)=?.但有时由于概率模型含有不确定的随机因素,分析起来比确定性的模型困难.在这种情况下,可以考虑采用蒙特卡洛(Monte Carlo)方法.Monte Carlo方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题.蒙特卡洛方法属于试验数学的一个分支,它的基本思想是首先建立一个概率模型,使所求问题的解正好是该模型的参数或其他有关的特征量.然后通过模拟统计试验,即多次随机抽样试验,统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率,最后利用建立的概率模型,求出要估计的参数即问题的解. 参考文献 1 李文林.数学史概论〔M〕.北京:高等教育出版社,2002 2 张丹.统计与概率〔M〕.北京:高等教育出版社,2006 3 张远南.概率和方程的故事〔M〕.北京:中国少年儿童出版社,2005