陕西省地质局.1973.李四光同志著作和讲话选编(1928~1970)
程克明,王铁冠.1993.天然气源岩地球化学特征.天然气地球科学,4(2):49~94
程克明,赵长毅.1997.吐哈盆地煤成油气的地质地球化学研究.勘探家:石油与天然气,2(2):5~10,19
戴金星.1979.成煤作用中形成的天然气与石油.石油勘探与开发,3
戴金星.1980.我国煤系地层含气性的初步研究.石油学报,4
戴金星.1992.各类天然气的成因鉴别.中国海相油气(地质),6(1):11~19
戴金星.1996.中国大中型气田有利勘探区带.勘探家:石油与天然气,1(1):6~9
戴金星.2007.中国煤成气潜在区.石油勘探与开发,34(6):641~645,663
戴金星,李先奇.1986.中亚煤成气聚集域东部气聚集带特征:中亚煤成气聚集域研究.石油勘探与开发,22(5):1~7
戴金星,王廷栋.2000.中国碳酸盐岩大型气田的气源.海相油气地质,5(1):12~13
戴金星,桂明义,黄自林,等.1986.楚雄盆地中东部禄丰———楚雄一带的二氧化碳气及其成因.地球化学,1:42~49
杜金虎,易士威,卢学军,等.2004.试论富油凹陷油气分布的“互补性”特征.中国石油勘探,9(1):15~22
龚再升,王国纯.1997.中国近海油气资源潜力新认识.中国海上油气(地质),11(1):1~12
顾家裕.1994.沉积相与油气.北京:石油工业出版社
何登发,赵文智.1999.中国西北地区沉积盆地动力学演化与含油气系统旋回.北京:石油工业出版社,1~181
侯启军,魏兆胜,赵占银,等.2006.松辽盆地的深盆油藏.石油勘探与开发,33(4):406~411
胡朝元.1982.生油区控制油气田分布———中国东部陆相盆地进行区域勘探的有效理论.石油学报,2
胡见义,黄第藩,等.1991.中国陆相石油地质理论基础.北京:石油工业出版社
黄第藩,李晋超,程中第,等.1983.旱2井岩石抽提物中未成熟和成熟芳烃系列化合物组成分布的比较.地球化学,1:32~40
黄第藩,李晋超.1982.干酪根类型划分的X图解.地球化学,1:21~30
黄汲清.1947.新疆油田地质调查报告.经济部中央地质调查所
黄汲清,任纪舜,等.1980.中国大地构造及演化.北京:科学出版社,1980
贾承造,宋岩,魏国齐,等.2005.中国中西部前陆盆地的地质特征及油气聚集.地学前缘,12(3):3~13
贾承造,赵文智,邹才能,等.2007.岩性地层油气藏地质理论与勘探技术.石油勘探与开发,34(3):257~272
贾承造,赵文智,邹才能,等.2008.岩性地层油气藏地质理论与勘探技术.北京:石油工业出版社,地质出版社,1~20
蒋有录,查明主编.2006.石油天然气地质与勘探.北京:石油工业出版社,1~11,140~160
金之钧,张金川,王志欣.2003.深盆气成藏关键地质问题.地质论评,49(4):400~407
李德生.1980.渤海湾盆地复合油气田的开发前景.石油学报,1(1):1~15
柳广弟主编.2009.石油地质学.北京:石油工业出版社,1~15
罗平,裘怿楠,贾爱林,等.2003.中国油气储层地质研究面临的挑战和发展方向.沉积学报,21(1):142~147
罗志立.1989.中国寻找大气田的前景及方向.石油学报,10(3):20~30
邱蕴玉.1994.油气聚集保存的时间性和有效性分析———油气有效成藏期及有效成藏组合研究.中国海上油气(地质),8(5):289~300
邱中建.1974.加速渤海湾油气勘探的几点想法———复式油气聚集(区)带机理.石油勘探开发研究院档案室
裘亦楠,薛叔浩,应凤祥.1997.中国陆相油气储集层.北京:石油工业出版社
史训知,戴金星,王则民,等.1985.联邦德国煤成气的甲烷碳同位素研究和对我们的启示.天然气工业,2
宋岩,戴金星.1998.中国大中型气田主要地球化学和地质特征.石油学报,19(1):1~5
宋岩,赵孟军,柳少波,等.2005.中国 3 类前陆盆地油气成藏特征.石油勘探与开发,32(3):1~6
孙肇才,郭正吾.1991.板内形变与晚期次生成藏———扬子区海相油气总体形成规律的探讨.石油实验地质,13(2):107~142
田在艺.1960.中国陆相沉积生油和找油论文集.北京:石油工业出版社
田在艺,王善书.1985.我国海域地质构造与含油气沉积盆地特征.石油学报,8(8):1~12
王昌桂,郭彦如.1993.吐鲁番坳陷天然气地质特征及成藏模式.新疆石油地质,14(2):117~125
王廷栋,王海清.1989.以凝析油轻烃和天然气碳同位素特征判断气源.西南石油学院学报,11(3):1~15
翁文波.1948.从定碳比看中国石油远景
吴崇筠.1983.构造湖盆三角洲与油气分布.沉积学报,1(1):5~26
吴崇筠,薛叔浩,等.1992.中国含油气盆地沉积学.北京:石油工业出版社
吴河勇,梁晓东,向才富,等.2007.松辽盆地向斜油藏特征及成藏机理探讨.中国科学:D 辑,37(2):185~191
武守诚.1988.中国板块演化与油气盆地.石油实验地质,3(4)
袁选俊,谯汉生.2002.渤海湾盆地富油气凹陷隐蔽油气藏勘探.石油与天然气地质,23(2):130~133
翟光明,宋建勇,靳久强,等.2002.板块构造演化与含油气盆地形成和评价.北京:石油工业出版社
张厚福,方朝亮,高先志,等.1999.石油地质学.北京:石油工业出版社
张金川.2003.根缘气成藏主控地质因素.地球学报,z1:120~124
张恺.1995.论板块构造旋回与油气壳-幔深部成因说.新疆石油地质,16(1):1~9
赵文智,程克明.1995,吐哈盆地煤系地层油气聚集特征与勘探对策.天然气工业,15(4):13~17
赵文智,何登发,池英柳,等.2001.中国复合含油气系统的基本特征与勘探技术.石油学报,22(1):6~13
赵文智,何登发,等.2002.含油气系统术语、研究流程与核心内容之我见.石油勘探与开发,29(2):1~7
赵文智,汪泽成,张水昌,等.2007.中国叠合盆地深层海相油气成藏条件与富集区带.科学通报,52(1):9~18
赵文智,王红军,徐春春,等.2010.川中地区须家河组天然气藏大范围成藏机理与富集条件.石油勘探与开发,37(2):146~157
赵文智,王兆云,汪泽成,等.2005a.高效气源灶及其对形成高效气藏的作用.沉积学报,23(4):710~719
赵文智,王兆云,张水昌,等.2005b.有机质 “接力成气”模式的提出及其在勘探中的意义.石油勘探与开发,32(2):1~7
赵文智,张光亚,王红军,等.2003a.中国叠合含油气盆地石油地质基本特征与研究方法.石油勘探与开发,30(2):1~8
赵文智,邹才能,汪泽成,等.2003b.富油气凹陷 “满凹含油”论———内涵与意义.海相油气地质,8(3):130~142
邹才能,池英柳,李明,等.2004.陆相层序地层学分析技术:油气勘探工业化应用指南.北京:石油工业出版社
邹才能,陶士振,谷志东.2006.中国低丰度大型岩性油气田形成条件和分布规律.地质学报,80(11):1739~1751
邹才能,陶士振.2007.大油气区的内涵、分类、形成和分布.石油勘探与开发,34(1):5~12
邹才能,陶士振,方向.2009a.大油气区形成与分布.北京:科学出版社,1~5
邹才能,陶士振,袁选俊,等.2009b.连续型油气藏形成条件与分布特征.石油学报,30(3):324~331
邹才能,袁选俊,陶士振,等.2010.岩性地层油气藏.北京:石油工业出版社,121~132
Ayers Jr W gas systems,resources,and production and review of contrasting cases from the San Juan and Powder river Bulletin,86(11):1853~1890
Cook of Estimated Ultimate Recovery(EUR)for wells in assessment units of continuous hydrocarbon accumulations,USGS Powder River Basin Province Assessment Team,Total Petroleum System and Assessment of Coalbed Gas in the Powder River Basin Province,Wyoming and Montana: Survey Digital Data Series DDS-69-C,~6
Crovelli R resource assessment method for continuous-type petroleum accumulations—The ACCESS assessment method:USGS Powder River Basin Province Assessment Team,Total Petroleum System and Assessment of Coalbed Gas in the Powder River Basin Province,Wyoming and Montana: Survey Digital Data Series DDS-69-C,~12
Dow W of oil correlation and source rock data to exploration in Williston basin
Gautier D L,Dolton G L,Takahashi K I,Varnes K L, National Assessment of United States oil and gas resources—Results,methodology,and supporting data: Survey Digital Data Series DDS-30
Hubbert M of petroleum under hydrodynamic Bulletin,37(6):1954~2026
Hunt J and migration of petroleum from abnormally pressured fluid Bulletin,7(1):61~69
Klett T R and Charpentier R Model Users Guide: Survey Open-File Report 03-354,~35
Klett T R and Schmoker J Survey Input-Data Form and Operational Procedure for the Assessment of Continuous Petroleum Accumulations:USGS Uinta-Piceance Assessment Team,Petroleum Systems and Geologic Assessment of Oil and Gas in theUinta-Piceance Province,Utah and Colorado: Survey Digital Data Series DDS-69-B,~9
Law B gas Bulletin,86(11):1891~1915
Levorsen A of and company,1~850
Magoon L B,Dow petroleum system-from source to Memoir 60,3~24
Magoon L petroleum system a classification scheme for research,resource assessment,and exploration,AAPG bulletin,71(5):587
Masters J basin gas trap,Western Bulletin,63(2):152~181
Nielson D and apparatus for shale gas States Patent,
Pan C origin of petroleum in north Shensi,and the Cretaceous of Szechuan, Bulletin,25:2058~2068
Parker H W,et of oil from oil shale,United States Patent,
Perrodon of oil and gas accumulations: Aquitaine,187~210
Pollastro R petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous(unconventional)gas accumulation,Fort Worth Basin, Bulletin,91(4):551~578
Rose P R,Everett J I basin centered gas accumulation,Roton Basin,Southern & Gas Journal,82(40):190~197
Schmoker J perspectives for unconventional gas bulletin,86(11):1993~2000
Schmoker J ,Method for assessing continuous-type(unconventional)hydrocarbon D L,Dolton G L,Ta-kahashi K I,Varnes K L, National Assessment of United States oil and gas resources—Results,methodology,and supporting data: Survey Digital Data Series DDS-30
Schmoker J Survey Assessment Model for Continuous(Unconventional)Oil and Gas Accumulations—The“FORSPAN”Model:US Geological Survey Bulletin 2168,~9
Schmoker J geological survey assessment concepts for continuous petroleum accumulations:US Geological Survey Digital Data Se-ries DDS-69-D,~9
SPE,AAPG,WPC, Resources management system,1~47
Tissot B P,Welte D formation and York,SpringerVerlag
天然气管道运行规范 : 长输天然气管道清管作业规程 : 世界长输天然气管道综述 : 希望对你有帮助
油气储运工程论文
古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。以下是我整理的油气储运工程论文,希望能够帮助到大家!
摘要: 针对油气储运工程专业旧有的专业课程设置及教学内容存在的问题,提出了该专业课程模块化设置的构想,根据油气储运工程专业特点将专业课程划分为油品输送和储存技术、天然气输送和储存技术和专业通用技术三大模块,以此为基础构成完整的课程体系框架。本文内容是对油气储运工程专业课程设置改革的一点探讨,起到抛砖引玉的作用。
关键词: 油气储运工程 课程体系 模块化
一、油气储运工程专业概况及专业特点
油气储运工程专业的培养目标是培养具备工程流体力学、物理化学、油气储运工程等方面知识,能在国家与省、市的发展计划部门、交通运输规划与设计部门、油气储运与销售管理部门等从事油气储运工程的规划、勘查设计、施工项目管理和研究、开发等工作,适应社会主义现代化建设需要,全面掌握油气储运工程领域各方面知识,具有开拓、创新精神、较强的动手能力和协调能力的高级工程技术人才。 油气储运顾名思义就是油和气的储存与运输,从油气储运工程的主要任务可以归纳得出:油气储运工程专业方向可以划分为两大方向,即油品(包括原油和成品油)输送和储存技术、天然气输送和储存技术。由于石油产品和天然气其物性参数有其共性又有其各自的特性,因此造成油气储运工程两大专业方向有共通处,又有其各个方向的独立性,两者即独立又有机的结合,这就是油气储运工程专业其独有的专业特色。
二、国内油气储运工程专业课程设置调研
我国的油气储运工程学科是从20世纪四、五十年代起借鉴前苏联的办学经验而建立起来的[1]。近二十年来,随着我国油气储运业的兴旺发展,对从事油气储运工作的专业技术人才的需求也不断增大,我国开办油气储运专业的大学已从原来的两所增加到20多所。其中具有代表性的大学除了江苏工业学院外,主要还有:石油大学、西南石油大学、辽宁石油化工大学和后勤工程学院。笔者调研了这几所高校的油气储运工程专业课程的设置情况,有如下认识:
总体上各高校的油气储运工程专业课程设置架构大体相同,都兼顾了油和气两个方向,开设的专业课程主要有:油气集输工程、油库设计与管理、专业英语、储运防腐技术、泵与压缩机、油料学、储运仪表自动化、城市配气、管罐强度设计、油气管道输送、储运焊接和施工等。但由于各高校所处位置和专业定位的不同,其课程设置也有其各自的侧重点。石油大学位于北京和山东,辽宁石油化工大学位于东北地区,主要面向油田和长输管道以研究原油的储存和运输为主,其课程设置偏重于油品的输送和储存技术。西南石油大学位于四川,主要面向气田以研究天然气的储存和运输为主,其课程设置偏重于天然气的输送和储存技术。后勤工程学院位于重庆,主要研究对象是野战油库和管线的工艺和设备问题,其课程设置偏重于军用油品的储存和输送技术。江苏工业学院位于经济发达的长江三角洲,由于长江中下游地区是我国重要的石油化工基地,以此为依托,该院的油气储运工程专业主要以炼厂油品及成品油的储存和运输技术为特色,课程设置也以此为基础。
通过调研以及在学生中的调查我们发现目前国内油气储运工程专业课程设置主要存在以下问题:
(1)油品和天然气的课程散乱设置,课程设置繁琐复杂,未突出专业的方向性,使学生在学习过程中无法理清思路,形成清晰、完整的专业链条,找不准专业的研究方向和重点。
(2)某些课程教学内容重复,比如:油气集输中天然气矿场集输、输气管道设计与管理、燃气输配课程中的天然气物性参数、水力计算、常用设备和管材等教学内容都存在重复,油气集输中原油矿场集输和输油管道设计与管理课程中也存在类似现象。此种重复极大的浪费了学时,降低了教学效率。
(3)无论是油品输送系统还是天然气输送系统都是由矿场集输处理系统、干线输送系统、城市终端配送和储存系统所构成的一个产、供、销一体化的大系统。而现行的课程设置却是人为的将整个油气储运大系统分割成前述的三个子系统分别进行讲授,使学生无法形成大系统的工程概念,也无法了解各个系统间的相互联系和影响,这是同系统论和大工程观的教学理念相悖的。
进入21世纪以来,大力发展天然气工业是我国的基本国策,未来的'全国天然气总体布局中,30%多的工程涉及江苏省。天然气利用在江苏省及其全国的大力发展,必将需要大量的天然气输送和储存技术的专门人才,因此加强油气储运工程学科天然气输送和储存技术的研究是储运学科发展的大势所趋。江苏工业学院油气储运工程专业为了在坚持原有特色的基础上有更大的发展,针对储运学科专业课程设置中存在的问题以及储运学科发展的大趋势,有必要在专业课程设置上作出改革和创新,因此我们在此方面做了以下探讨。
三、油气储运工程专业课程模块化设置构想
在坚持原有通识教育平台课程和专业基础平台课程体系的基础上,主要对专业课程体系进行模块化设置,按专业方向将专业课程划分为油品输送和储存技术、天然气输送和储存技术和专业通用技术三大模块。主要构想如下:
1、专业通用技术模块
该模块课程设置主要为油品和天然气两个专业方向都需要的通用技术课程,以储运防腐技术、储运仪表与控制工程、储运焊接与施工、油气计量技术、油气储运实验技术、油罐与管道强度设计为主要必修课程。
随着石油天然气工业和油气储运学科的发展,越来越多的新技术、新设备、新理论应用于油气储运系统,油气储运学科的理论内涵和外延越越来越多的与其他相关学科进行交叉和渗透。例如随着SCADA技术、地理信息系统(GIS)、虚拟现实技术、智能管道机器人等尖端技术在油气储运工程上的应用,使得油气管道输送系统的自动化、信息化、智能化水平越来越高,这就使得从事油气管道设计和管理的专业人员必须具备自动化、计算机、智能机械等相关学科领域的相应知识;同时,随着世界各国经济发展对油气资源需求的进一步增长,国际油气营销市场的行情将会愈加变化莫测,各国都在通过建立一套完善的油气储运系统来预防国际油价、天然气价格波动给本国经济带来的不利影响。而随着我国加入WTO后油气工业国际化经营战略的实施,建成一套调度灵活的国内油气储运系统和数条与国际油气市场接轨的跨国油气输送干线的发展步伐必然加快。这一发展动向不仅会给包括油气储运业在内的相关产业带来一次很好的发展机会,同时也给油气储运学科提出了一些亟待解决的新课题,即如何规划好这样一个庞大的全国油气储运系统以及如何解决好调度管理、营销决策等方面的技术难题[2]。这就需要我们的油气储运技术人才具有一定的技术经济、工商管理和市场营销的相关知识;此外,近年来,国家大力倡导建设节约型、环保型社会,因此油气管道输送系统的节能环保技
术也将是本学科重点研究的方向。随着油气管道完整性,可靠性管理技术的应用,对油气输送系统进行完整性管理是油气管道系统的发展趋势,将大大提高油气输送和储存系统的安全性和可靠性,这也需要油气储运技术人员具备安全工程、可靠性、节能环保的相应知识。为了适应储运学科的发展趋势并遵循“厚基础、宽专业、高素质、能力强、复合型、重德育”型的人才指导思想,专业通用技术模块应注意以下三个方向的学科交叉和扩展。
(1)与自动化和计算机学科的交叉:在该方向拟开设自动控制原理、计算机网络技术、虚拟仪表和虚拟技术、GIS技术及应用、SCADA技术、智能清管技术等选修课程,以培养学生的计算机、自动控制和智能化等新技术的运用能力。
(2)同工商管理和市场营销学科的交叉:在该方向拟开设石油工业技术经济学、油气营销、石油法规与国际石油等选修课程,增强学生工程经济方面的知识水平和经济全球一体化的的应对意识和能力
(3)同节能环保,安全,可靠性方面的交叉:在该方向拟开设油气管道节能工艺技术、油气管道安全工程、油气管道风险评价与完整性管理等选修课程,培养学生安全、环保、节能管理和设计的能力,以满足建设节约型社会的人才需要。
通过这一系列课程的设置,在专业通用技术模块中将构成以必修课程为主,三个交叉子模块为辅的完整结构。学生可根据自身兴趣和发展方向,选择相应交叉子模块中的选修课程,以扩展自身的知识面,体现“厚基础”的指导思想。
2、油品输送和储存技术模块
在该模块中以油品输送和储存这一大系统为主链条,以输油管道设计与管理、油田集输工程、油库设计与管理为核心课程,构建完整统一的油品输送和储存技术课程群。在该模块中,为坚持江苏工业学院油气储运学科以炼厂油品及成品油的储存和运输技术为特色,继续开设炼厂管线设计、液化气站与加油站设计、油气回收与环保技术等选修课程,以适应炼化和销售企业的用人需要。
3、天然气输送和储存技术模块
(1)在该模块中以天然气输送和储存这一大系统为主链条,以输气管道设计与管理、气田集输工程、燃气输配为核心课程,构建完整统一的天然气输送和储存技术课程群。并根据天然气输送和储存技术的新发展和新动向,开设天然气水合物、天然气管道减阻内涂技术、液化天然气技术、地下储气库设计与管理、CNG加气站设计与管理等选修课程。
(2)按照天然气从产出到用户需经过矿场集输处理系统、干线输送系统、城市终端配送和储存系统这样一个完整、连续并相互影响的工艺流程,将输气管道设计与管理、气田集输工程、燃气输配三门课程整合成天然气管路输送一门课程,避免以前三门课程中部分内容的重复,并从大系统观的角度来加以讲授,使学生既了解三个子系统的区别,又了解了它们之间的联系和相互影响性,形成大工程观的概念。
(3)为适应天然气工业和天然气管道运输业的大发展,我们需适当加大天然气输送和储存技术课程模块的建设,除了完善天然气输送和储存技术的理论课程结构外,还需在实验、课程设计及毕业设计、实习三个方面加以建设。
①实验建设:在江苏工业学院原有油气储运省重点技术实验室的基础上,集中力量建设燃气储运实验平台和储运安全与防护系统,打造由燃气储运实验平台、油品储运实验平台和储运安全与防护系统三大平台为主体的江、浙、沪地区乃至国内先进的油气储运综合工程实验中心。逐步开设天然气输送、燃气物性测试、天然气水合物机理研究等相关实验,形成天然气输送和储存技术理论讲授和实验相结合的教学模式。
②课程设计和毕业设计建设:江苏工业学院油气储运工程专业原有的课程设计和毕业设计都偏重于油品输送和储存方向,天然气方向的课程设计和毕业设计较为薄弱,因此在天然气管路输送大课程的基础上,拟增设天然气集输、干线输气管道、城市燃气输配三个方向的课程设计题目,学生可任选一个方向进行课程设计。对于毕业设计,应增加天然气方向的毕业设计选题,为学生提供与工程实际结合,技术先进、难度适中的天然气方向的课题,使毕业设计选题更加多样化,体现专业方向和特色。
③实习基地建设:针对原有的实习基地主要以让学生了解炼油厂生产工艺流程、炼厂油品装卸工艺流程、油库工艺流程,炼厂和油库常用设备为主,实习基地类型较单一,缺少较大型的天然气输配技术实习基地的现状,我们需紧抓西气东输管网在长江三角洲大力发展的大好机遇和“十五规划”中的五大储气库之一——东南储气库将建在江苏工业学院所在地—常州金坛这一良好条件,积极联系和沟通相关企业,力争西气东输常州分输站、金坛储气库,西气东输管线上海终控中心等单位能成为本专业的实习基地,以完善本专业的实习基地类型,加强学生对天然气输送和储存工艺的实践认知。
本文的内容只是对油气储运工程专业课程设置改革的一点探讨,起到抛砖引玉的作用,希望能对油气储运工程学科建设有所贡献。
参考文献:
[1]严大凡。油气储运专业回顾与展望[J]。油气储运,2003,22(9):1—3
[2]姚安林。我国油气储运学科的发展机遇[J]。油气储运,1999,18(2):6—10
[3]张光明,汪崎生。石油工程专业课程体系及教学内容改革与实践[J]。江汉石油学院学报(社科版),2001,3(1):33—36
油气储运工程就业方向分析
油气储运工程专业是研究油气和城市燃气储存、运输及管理的一门交叉性高新技术学科,是石油和天然气工业的主干专业。
1、油气储运工程专业研究方向
该专业所包含的研究方向有:01油气长距离管输技术02多相管流及油气田集输技术03油气储运与城市输配系统工程04油气储存与液化天然气技术05油气储运安全工程。
2、油气储运工程专业培养目标
本专业培养研究生具备油气集输、油气管输、油气储存、油气储运工程施工与管理、城市配气等方面知识,获得油气储运工程师的基本训练。具有较宽广坚实的专业理论基础,掌握较系统深入的油气储运工程技术知识,了解国际上有关领域的新动态,能正确地运用所学知识解决工程技术问题,具备独立开展专业技术工作和从事相关科学研究的能力,并具有继续学习、创新和提高的能力。具有较强的外语应用能力,能熟练运用一种主要外语阅读本学科的文献资料、撰写专业论文,具有较好的听说能力。
3、油气储运工程专业就业方向
本专业毕业生主要在油气田企业、油气管道的规划设计、建设、运营管理单位、石油化工企业、石油销售企业、城市燃气公司、建筑公司、部队和民航的油料公司、设计院以及国家物资储备部门等领域从事工程规划、勘测设计、施工、监督与管理、科学研究与技术开发工作以及油气储运设备运营等方面的技术管理、研究开发等工作。
管理学毕业论文:浅谈油气长输管道的风险管理
随着使用年限的延长,管道维护的工作量会越来越大,从修复损毁部件到日常保养,再到根据复杂的运行数据资料通过电脑处理结果进行的预防性维修等。下面是我收集整理的管理学毕业论文:浅谈油气长输管道的风险管理,希望对您有所帮助!
摘要: 近年来,随着管道事业的快速发展,为满足石油、天然气长距离移动运输方需求,开发一种新的管道运输方式——长输管道。由于长输管道的使用范围很广,因此长输管道建设安全管理工作也受到越来越多的关注,如何做好长输管道监理安全管理也工作显得尤为重要。只有对长输管道可能出现的风险进行合理的管理,才能提高企业经济效益以及保障人类生活安全。本文从多个方面对长输管道进行了研究和分析,提出了长输管道的风险及相关管理措施,以期为日后工作提供些许帮助。
关键词 :油气管道、风险管理、措施
一、前言
长输管道系统是一个复杂的系统工程,涉及上游的气田、输气站场、管道、储气库和下游的各个用户。任何一处出现问题都将影响整个系统的运行,特别是一旦出现事故不能向下游正常供气时,将影响到千家万户的正常生活。再加上油气的易燃易爆及其毒性等特点,一旦管道系统发生事故,将很容易产生重大火灾事故甚至是爆炸、中毒、污染环境、人员伤亡等恶性后果,尤其是在人口稠密的地区,往往会造成严重的人员伤亡及重大经济损失,在某种程度上增加了城市的不安全因素。所以,为了使油气真正造福于民,造福于社会,长输管道的安全设计及安全运行是十分重要的。
二、长输管道的特点
1、距离长、消耗大。长输管道,顾名思义是距离较长的运输管道。因此,在铺设管道过程中,将会消耗大量的人力、物力和财力,并且在工程建设当中会伴有不确定的各种安全因素。
2、管理系统复杂。由于工程建设过程中,该工程设计的施工技术以及施工范围大,就导致了该工程管理系统的发砸星。
3、技术要求高。由于长输管道的特殊性,其对各个方面的要求都很高,如果在技术层面上出现失误,就会带来严重的后果。因此在输送管道建设时期,应加强管理方面的管理实施,尽量降低事故的发生率。
三、管道设计要求
一条长输管道能否长期安全运行,特别是一旦发生事故后使其造成的后果和影响最小,设计工作是非常重要的一个环节,主要有以下几个方面的要点。
1、管道设计应符合当地总体规划要求,遵循节约用地和经济合理的原则
根据《石油天然气管道保护法》(以下简称《保护法》)规定,管道建设选线设计方案应符合城乡规划,经当地规划主管部门审核通过的管道选线方案,将依法纳入当地城乡规划中,管道建设用地在规划实施中应予以控制预留。这项规划编制中要将确定的管道方案落实到规划中,以便于在保证管道路由用地及安全的情况下对城镇各项建设进行资源配置协调及建设进程策划的总体控制性安排。按照长输管道的使用性质和相关保护规定,管道用地及管道周围土地在管道使用期间将被长期占用,然而随着社会的不断发展,城乡建设的不断扩大,就有可能将这些被输送管道所占用的土地也将划为建设区,这样就会导致土地资源紧张,出现交通拥挤空间不足等问题。因此在设计管道铺设时应尽量节约土地,避免占用建设土地。根据我国法律规定,依法建设的.管道通过的土地而影响该土地的使用的,应给与该土地所属者的使用者,应当按照管道建设时土地的用途给予补偿。同时,不同地区的补偿方式也不尽相同,其补偿原则是规定将管道用地与土地价值结合起来,在管材强度使用和安全距离上进行综合考虑,更有利于实现城镇土地资源的合理利用,提高综合效益,做出经济合理的线路走向方案。为更好节约用地,长输管道路尽量沿公路、市政道路、绿化地等公共线性地下空间布置,这样可增加管道与建筑物的距离,对两侧建设用地的影响较小,也更经济合理。
2、现场详细勘察,与当地道路、河道、电力、市政管道等基础设施专项规划及行业管理规定衔接
目前利用航拍正射影像图进行管道设计是较为合理的做法,因其具有很强的现实性及准确性特点而受到广泛欢迎。但是由于在大片植被覆盖区域航拍影像图不能对其进行准确的航拍。因此在这些区域需要设计人员沿线深入踏勘、调研,详细了解管线经过区域的地面形状、待建项目及地下设施情况等,以提高线位的可实施性,及时掌握与道路、河道、电力、市政管道等基础设施交叉或并行敷设的情况。这些行业管理部门都有各自行业的发展建设规划及特殊的使用和安全要求,设计中应充分掌握相关专项规划及行业管理规定等,进行仔细研究,满足国家相关技术要求,尽量避免设计时的交叉连接。如果管道在设计时与规划道路交错时,应考虑到修路时碾压过程,因此在管道铺设是应采用预埋套管方式,另外为保证管道的安全性,还应在套管基础用碎石压实处理。
3、应当符合管道保护的要求,设计中要加强多重安全防护措施
从国内和国外的实践看,造成管道事故的主要原因是:外力作用下的损坏,管材、设备、施工缺陷,管道腐蚀等因素。其中,就目前调查显示,管道由于受到第三方影响而破坏的事接近百分之五十,这就提醒我们在长输管道设计时应特别注意这点。在保护管道方面,大致有以下几方面措施:(1)增加材料的硬度,例如采用高厚度的管道以此来提高管道自身安全系数。(2)适当控制建筑物与管道之间的距离,这样就能降低事故的发生率从而确保管道的安全性。(3)采用新型材料避免管道被其他物质腐蚀,另外亦可采用化学方法保护管道,比如阴极保护法。(4)增加管道上方覆盖层的厚度或在管道上方设置隔板,避免管道遭到非法开挖。⑤采用先进的自控系统,分段阀门采用遥控或自动控制。
四、管道维护与改造
随着使用年限的延长,管道维护的工作量会越来越大,从修复损毁部件到日常保养,再到根据复杂的运行数据资料通过电脑处理结果进行的预防性维修等。管道公司通常会采用多种方式监控系统运行状态,以判断系统是否在高效区运行,制定最优维护、维修计划。美国的管道公司会定期维护和更换易损件,如压缩机阀等。对于往复式压缩机站,压缩机阀的损毁是造成其非计划停运的最大原因。管道公司计划、非计划停运往复式压缩站的最主要原因,就是更换压缩机阀。另外,管道公司还会考虑以下技术改造措施,以提高系统运行的可靠性。
1、调整离心式压缩机的叶轮直径。对于运行条件已经远远偏离原来的设计条件,造成离心式压缩机效率很低,可以通过调整压缩机叶轮直径,使其适应新的工况条件。这一技术方法有时是为了适应一年之内不同季节气量的变化,有时是为了适应较长时期的供需变化。在这方面,英国MSE公司积累了丰富的经验,曾经为BP、Marathon、HESS等公司提供服务,以适应气田产量降低、集输气系统压力变化大等情况。
2、更换往复式压缩机的柱塞。为了适应更高的压力需求或负荷变化,用改进后的新柱塞替换复式压缩机的现有柱塞。
3、设计先进的压缩机脉动控制系统。运用先进的压缩机脉动控制系统,在降低脉动的同时还能够提高运行效率,降低能量消耗。
4、对电机拖动压缩机进行调速控制。调整电机拖动压缩机转速,使其适应气量变化,达到较高的运行效率。但由于此项改造比较复杂,改造费用较高,此项技术应用较少。
五、结束语
合理的线路走向、优秀的设计方案,加强长输管道的工程质量和技术管理,规范施工管理,完善有关法律和法规,可为控制投资和工程顺利投产创造良好的条件,是系统运行可靠性、安全性和经济性的重要保证。
参考文献:
郭超. 天然气长输油气管道现场安装问题及其质量控制[J]. 中国石油和化工标准与质量. 2011(07)
郑贤斌. 油气长输管道工程人因可靠性分析[J]. 石油工业技术监督. 2007(06)
赵忠刚,姚安林,赵学芬,薄英. 油气管道风险因素的权重赋值方法研究[J]. 天然气工业. 2007(07)
刘瑞凯,吴明. GIS技术在长输油气管道风险分析与决策中的应用[J]. 当代化工. 2011(09)
99 浏览 3 回答
231 浏览 4 回答
197 浏览 5 回答
303 浏览 4 回答
343 浏览 6 回答
173 浏览 4 回答
138 浏览 5 回答
202 浏览 2 回答
146 浏览 4 回答
334 浏览 3 回答
279 浏览 3 回答
241 浏览 7 回答
180 浏览 3 回答
127 浏览 6 回答
137 浏览 4 回答