数控机床诊断维修方法经验浅述X 摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_�APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.
河北师范大学职业技术学院毕业论文 数控车床加工程序的优化问题 (针对 Faunc-0i-MateTc 进行分析) 我们在数控车上加工的零件主要还是以回转件为主,其加工精度一般都比较高,而往往加工精 度高出废品率也比较高. 那么我们如何才能保证高的精度而出废品率低?当然要达到高精度低废品 率的要求需要考虑的各方面的原因,而本论题主要是侧重于从程序这一角度来分析.旨在使车床编 程人员在满足工艺要求的前提下, 编制出即简洁, 运算量小又能使机床损耗小, 刀具磨损小的程序. 一, 简析数控车床的工艺方面问题编制数控机床加工零件程序需要处理一系列的工艺问题. 在普通机床上加工零件的工艺实际上 就是一个工艺卡片,机床加工的切削用量,走刀路线,工序内的工步安排等,往往都是操作工人自 行决定.而数控机床是按程序进行加工的.因此加工中的所有工序,工步,每道工序的切削用量, 走刀路线,加工余量,以及所用刀具的尺寸,类型等都要预先确定好并编入程序中.为此要求一个 合格的编程人员首先应该是一个很好的工艺员,并对数控机床的性能,特点和应用,切削规范和标 注刀具系统非常熟悉.否则就无法做到全面,周到地考虑零件加工全过程,无法正确,合理地确定 零件加工程序.其加工工艺主要包括:机床加工的切削用量,工序划分及安排,走刀路线,加工顺 序等. 切削用量的选择切削用量的选择:数控加工零件时,其切削用量都预先编到加工程序里面,在正常的情况下是 人工部允许变动的.只有在试切削或是出现异常情况时,才允许通过速度调节或是电手轮调节其切 削用量.因此程序中所选的切削用量一般是最合理,最优化的.这样才可以提高其数控加工机床的 加工精度,刀具寿命和生产率,降低加工成本. 影响数控加工切削用量的因素有: (1)机床 切削用量的选择必须在机床主传动功率,进给传动功率,主轴转速范围之内.机床刀具工 件系统的刚性是限制切削用量的重要因素. 切削用量的选择使机床—刀具—工件系统部发 生较大的颤动.对于热稳定性好,热变形小,刚性好的数控机床,可以适当加大切削用量. (2)刀具 刀具材料是影响切削用量的有一重要因素.常用的刀具材料有高速钢,硬质合金,陶瓷和 金刚石.金刚石刀片性能最好,允许很高的切削速度,耐磨性好,硬度高,硬度随温度变 化小.数控机床所采用的刀具多是部刃磨可换刀片(机夹刀片)机夹刀片的材料,形状和 尺寸,必须与程序中切削速度和进给量相适应并存入刀具参数里面.对于标准刀片的参数 可参考有关的手册或是产品样本. (3)工件 加工工件的材料不同,所选用的刀具材料,刀片的类型也不同.要注意其可切削性.优良 的切削性能的标志:在高的切削速度下,有效的形成切屑,较小的饿道具磨损,良好的表 面加工质量采用较高的切削速度, 较小的背吃刀量和进给量, 可以获得较好的表面粗糙度. 采用合理的恒切削速度,较小的背吃刀量和进给量,可获得较高的加工精度.工件的测量 除首件全面检验外,应隔一段时间对工件的重要尺寸进行检验,控制刀具的磨损量及时进 行刀具的补偿或更换刀片. (4)冷却液 冷却液具有冷却和润滑的作用. 冷却液能带走切削过程中产生的热量, 降低工件, 刀具, 夹具和机床的升温, 减少刀具与工件的摩擦与磨损, 提高刀具寿命和工件的表面加工质量. 使用冷却液还能提高切削用量.冷却液必须定期更换,以防老化,腐蚀机床导轨或其他零 件. 工序划分的安排 (1)刀具的集中分序法 该法是按所用刀具来划分工序的方法.用同一把刀完成零件上所所有可第 1 页 共 8 页 河北师范大学职业技术学院毕业论文 以完成的部位.再用第二把刀,第三把刀完成他们可以完成的部位.这样可以减少换刀 的次数,压缩空行程时间,减少不必要的定位误差. (2)粗精加工分序法 对于单个零件要先粗加工,半精加工,而后在精加工.对于一批零件要, 应先全部进行粗加工,半精加工,最后在进行精加工,且粗,精加工之间最好先隔一段时 间以使粗加工后的零件的变形得到充分地恢复,然后再进行精加工以提高零件的加工精 度. (注:尤其是对于易变形的零件或是对精度要求较高的零件必须将粗,精加工放在不 同的工序下进行. ) (3)按加工部位分序法 一般是先加工平面,定位面,后加工孔;先加工简单的几何形状,再加 工复杂的几何形状;先加工精度低的部位,再加工精度高的部位. 加工路线的选择原则及加工顺序的安排加工路线的安排及确定 加工路线是指数控机床加工过程中刀具的运动轨迹和方向. 每一道工 序的加工路线的确定都是非常重要的,因为它影响着零件的加工精度及表面粗糙度.其加工路线的 总体划分原则为:保证加工精度及粗糙度,使得空行程最少及加工路线最短,计算也要方便.但是 在加工路线的确定中还需考虑以下几点: (1)应尽量减少进,退刀时间和其他辅助时间. (2)选择合理的进,退刀位置,尽量避免沿零件轮廓法向切入和进给中途停顿,且进,退刀的 位置应选在不重要的位置上. (3)加工路线一般是先加工外轮廓,然后再加工内轮廓. . 加工顺序的安排 重点是为了保证定位夹紧时工件的刚性和保证加工精度.一般可按以下原 则来进行: (1)上道工序加工部影响下道工序的装夹(特别是定位) (2)以相同的装夹方式或同一把刀加工的工序尽可能采用集中的连续加工,减少重复装夹,更 换刀具等辅助时间. (3)同一次安装中的加工内容,以对零件刚性小的内容先行. 指令及其插补方式概 及其插补方式概述 二, 车床数控系统的 G 指令及其插补方式概述 车床数控系统常用 G 指令 1,快速定位 G00 格式:G00 X(U)_ Z(W)_ 说明:X,Z:为绝对编程时,快速定位终点在工件坐标系中的坐标;U,W:为增量编程时, 快速定位终点相对于起点的位移量;G00 指令刀具相对于工件以各轴预先设定的速度, G00 指令中的快移速度由机床参数 "快 从当前位置快速移动到程序段指令的定位目标点. 移进给速度"对各轴分别设定,不能用 F 规定. 注意: 在执行 G00 指令时,由于各轴以各自速度移动,不能保证各轴同时到达终点,因而联动直线轴 的合成轨迹不一定是直线.操作者必须格外小心,以免刀具与工件发生碰撞.常见的做法是,将 X 轴移动到安全位置,再放心地执行 G00 指令. G00 一般用于加工前快速定位或加工后快速退刀.快移速度可由面板上的快速修调按钮修正. G00 为模态功能,可由 G01,G02,G03 或 G32 功能注销. 2,直线插补 G01 格式: G01 X(U)_ Z(W) _ F_ ; 说明: X,Z:为绝对编程时终点在工件坐标系中的坐标;U,W:为增量编程时终点相对于起 点的位移量;F_:合成进给速度.G01 指令刀具以联动的方式,按 F 规定的合成进给 速度,从当前位置按线性路线(联动直线轴的合成轨迹为直线)移动到程序段指令的终点. 第 2 页 共 8 页 河北师范大学职业技术学院毕业论文 G01 是模态代码,可由 G00,G02,G03 或 G32 功能注销. 3,圆弧进给 G02/G03 格式: G02X(U)_Z(W)_I_K_F 说明:G02/G03 指令刀具,按顺时针/逆时针进行圆弧加工.圆弧插补 G02/G03 的判断,是在 加工平面内,根据其插补时的旋转方向为顺时针/逆时针来区分的.加工平面为观察者迎 着 Y 轴的指向,所面对的平面. 注意: ①G02: 顺时针圆弧插补; G03: 逆时针圆弧插补; ②X, Z: 为绝对编程时,圆弧终点在工件坐标系中的坐标; ③U,W: 为增量编程时,圆弧终点相对于圆弧起点的位移量; ④I, K:圆心相对于圆弧起点的增加量(等于圆心的坐标减去圆弧起点的坐标,在绝对,增量编程 时都是以增量方式指定,在直径,半径编程时 I 都是半径值 R:圆弧半径,F:被编程的两个轴的 合成进给速度; 4,螺纹切削 G32 格式:G32 X(U)__Z(W)__ F__ 说明:X, Z: 为绝对编程时,有效螺纹终点在工件坐标系中的坐标; U,W: 为增量编程时,有效螺纹终点相对于螺纹切削起点的位移量; F: 螺纹导程,即主轴每转一圈,刀具相对于工件的进给值; 注意: ①从螺纹粗加工到精加工,主轴的转速必须保持一常数; ②在没有停止主轴的情况下,停止螺纹的切削将非常危险;因此螺纹切削时进给保持功能无效,如 果按下进给保持按键,刀具在加工完螺纹后停止运动; ③在螺纹加工中不使用恒定线速度控制功能; ④在螺纹加工轨迹中应设置足够的升速进刀段δ 和降速退刀段δ′,以消除伺服滞后造成的螺距 误差. 5,内(外)径切削循环 G90 圆柱面内(外)径切削循环 格式: G90 X__Z__F__; 说明:X,Z:绝对值编程时,为切削终点在工件坐标系下的坐标;增量值编程时,为切削终点 相对于循环起点的有向距离. 6,端平面切削循环 G94 格式: G94 X__Z__F 说明:X,Z:绝对值编程时,为切削终点在工件坐标系下的坐标;增量值编程时,为切削终点 相对于循环起点的有向距离 7,螺纹切削循环 G92 格式: G92 X(U)__Z(W)__ F__; 说明:X,Z:绝对值编程时,为螺纹终点在工件坐标系下的坐标;增量值编程时,为螺纹终点 相对于循环起点的有向距离. F:螺纹导程; 8,复合循环有四类复合循环,分别是: G71:内(外)径粗车复合循环; G72:端面粗车复合循环; G73:封闭轮廓复合循环; G70:精车循环; 运用这组复合循环指令,只需指定精加工路线和粗加工的吃刀量,系统会自动计算粗加工路线 和走刀次数. 第 3 页 共 8 页 河北师范大学职业技术学院毕业论文 (1)内(外)径粗车复合循环 G71 格式:G71 U(△d) R(r) G71 P(ns) Q(nf) X(△x) Z(△z) F(f) S(s) T(t); △d:切削深度(每次切削量); r:每次退刀量; ns:精加工路径第一程序段的顺序号; nf:精加工路径最后程序段的顺序号; △x:X 方向精加工余量; △z:Z 方向精加工余量; f,s,t:粗加工中 G71 程序段中编程的 F,S,T 有效,而精加工处于 ns 到 nf 程序段之 间的 F,S,T 有效. 注意: ①G71 指令必须带有 P,Q 地址 ns,nf,且与精加工路径起,止顺序号对应,否则不能进行 该循环加工. ②ns 的程序段必须为 G00/G01 指令. ③在顺序号为 ns 到顺序号为 nf 的程序段中,不应包含子程序. (2)端面粗车复合循环 G72 格式:G72 W(△d) R(r) ; G72 P(ns) Q(nf) X(△x) Z(△z) F(f) S(s) T(t); 说明:该循环与 G71 的区别仅在于切削方向平行于 X 轴. (3)固定形状复合循环 G73 格式:G73 U(△i) W(△k) R(d) ; G73 P(ns) Q(nf) X(△x) Z(△z) F(f) S(s) T(t); 说明:适用于铸造,锻造毛坯,与最终零件有相似外形. (4)精车循环 G70 格式:G70 P(ns) Q(nf) ; 数控机床中的插补原理在理解插补的基本概念之前,应先首先理解脉冲当量的含义.在数控机床中,刀具或是工件最 小的位移量是机床坐标轴运动的一个分辨单位,由检测装置辨识,称为分辨率(闭环系统) ,或称 为脉冲当量(开环系统) .又称之为最小设定单位.可见刀具的运动轨迹在微观上是由许多的小线 段构成的折线,不可能使刀具严格按照所要求的零件轮廓进行运动,因此只能用折线逼近所要求的 廓形曲线.而"插补"的实质就是使数控系统根据零件轮廓线型的有限信息(包括直线的起点,终 点,圆弧的起点,终点等) ,计算出刀具的一系列的加工点,完成所谓的数据的"密化"工作.也 就是说插补有两层意思:一是产生基本线型,二是用基本线型拟合其他轮廓曲线.如图所示常见的 插补方式有: 圆弧插补方式第 4 页 共 8 页 直线插补方式 河北师范大学职业技术学院毕业论文 三,椭圆宏程序的编制由于数控车床加工对象为各种类型的回转面,其中对于圆柱面,锥面,圆弧面,球面等的加工, 可以利用直线插补和圆弧插补指令完成,而对于椭圆等一些非圆曲线构成的回转体,加工起来具有 一定的难度.这是因为大多数的数控系统只提供直线插补和圆弧插补两种插补功能,更高档的数控 系统提供双曲线,正弦曲线和样条曲线插补功能,但是一般都没有椭圆插补功能.因此,在数控机 床上对椭圆的加工大多采用小段直线或者小段圆弧逼近的方法来编制椭圆加工程序. 在这里结合工作实践对车削椭圆轮廓的宏程序的编制方法进行探讨. 椭圆宏程序的编制原理数控系统的控制软件,一般由初始化模块,输入数据处理模块,插补运算处理模块,速度控制 模块,系统管理模块和诊断模块组成.其中插补运算处理模块的作用是依据程序中给定的轮廓的起 点,终点等数值对起点终点之间的坐标点进行数据密化,然后由控制软件,依据数据密化得到的坐 标点值驱动刀具依次逼近理想轨迹线的方式来移动,从而完成整个零件的加工. 依据数据密化的原理,我们可以根据曲线方程,利用数控系统具备的宏程序功能,密集的算出 曲线上的坐标点值,然后驱动刀具沿着这些坐标点一步步移动就能加工出具有椭圆,抛物线等非圆 曲线轮廓的工件. 椭圆宏程序的编制步骤宏编程一般步骤: 1.首先要有标准方程(或参数方程)一般图中会给出. 2.对标准方程进行转化,将数学坐标转化成工件坐标标准方程中的坐标是数学坐标,要应用到 数控车床上,必须要转化到工件坐标系中. 3.求值公式推导 利用转化后的公式推导出坐标计算公式. 根据实际选择计算公式. 4.求值公式选择 5.编程 公式选择好后就可以开始编程了. 下面分别就工件坐标原点与椭圆中心重合,偏离等 2 种情况进行编程说明. (1)工件坐标原点与椭圆中心重合 2 2 2 2 椭圆标准方程为 X / a + Y / b =1 ① 2 2 2 2 转化到工件坐标系中为 Z / a + X / b =1 ② 根据以上公式我们可以推导出以下计算公式第 5 页 共 8 页 河北师范大学职业技术学院毕业论文 X = ±b 1 Z 2 / a 2 Z = ±a 1 Z 2 / a 2 ④ ③ 在这里我们取公式③.凸椭圆取+号,凹椭圆取-号.即 X 值根据 Z 值的变化而变化,公式④不 能加工过象限椭圆,所以舍弃. 下面就是 FANUC 系统 0i 椭圆精加工程序: O0001;……………………………… 程序名 #1=100; ……………………………用#1 指定 Z 向起点值 #2=100; ……………………………用#2 指定长半轴 #3=50; ………………………………用#3 指定短半轴 G99 T0101 S500 M03; ………… 机床准备相关指令 G00 X150. Z150. M08; ………… 程序起点定位,切削液开 X0Z101.;…………………………快速定位到靠近椭圆加工起点的位置 N1WHILE[#1GE-80]DO1; …………于-80 时执行 DO1 到 END1 之间的程序 2 2 #4=#3*SQRT[1-#1*#1/[#2*#2]]; …计算 X 值,就是把公式 X = ± b 1 Z / a 里面的各值用变量代替 G01 X[#4*2] Z#1 ; …………直线插补 #1=#; ………………………步距 ,即 Z 值递减量为 ,此值过大 影响形状精度,过小加 重系统运算负担, 应在满足形状精度的前提下尽可能取大值. END1; ………………………………语句结束,这里的 END1 与上面的 DO1 对应 G01 Z-110.; ………………………加工圆柱面 X102.; ………………………………退刀 G00 X150. Z150.;…………………回程序起点 M09; …………………………………切削液关 M05; …………………………………主轴停止 M30; …………………………………程序结束 (2) 工件坐标原点与椭圆中心偏离 数控车床编程原点与椭圆中心不重合,这时需要将椭圆 Z(X)轴负向移动长半轴的距离,使起 2 2 2 2 点为 0,原公式 Z / a + X / b =1 转变为: 2 ( Z Z1 ) 2 / a 2 + X X 1) / b 2=1 ( ⑤ Z1----编程原点与椭圆中心的 Z 向偏距;此例中为-100 X1----编程原点与椭圆中心的 X 向偏距;此例中为 0 第 6 页 共 8 页 河北师范大学职业技术学院毕业论文 可推导出计算公式: 2 X = ± b 1 Z Z1) / a 2 + X 1 ( ⑥ (精加工程序) O0001; ……………………………程序名 #1=0; ……………………………用#1 指定 Z 向起点值 #2=100; …………………………用#2 指定长半轴 #3=50; …………………………用#3 指定短半轴 #5=-100; ……………………… Z 向偏距 G99 T0101 S500 M03; …………机床准备相关指令 G00 X150. Z150. M08; ……… 程序起点定位,切削液开 X0 Z1.;…………………………快速定位到靠近椭圆加工起点的位置 N1WHILE[[#1-#5]GE-80]DO1; ……于-80 时执行 DO1 到 END1 之间的程序 2 2 #4=#3*SQRT[1-[#1-#5]*[#1-#5]/[#2*#2]]; …计算 X 值, 就是把公式 X = ± b 1 Z / a 里面的各 值用变量代替 G01 X[#4*2] Z[#1-#5] ; ……直线插补 #1=#; …………………………步距 ,即 Z 值递减量为 END1; …………………………………循环语句结束 G01 Z-110 ; …………………………加工圆柱面 X102.; …………………………………平圆柱的阶梯端面 G00 X150. Z150. M09; ………………快速退刀并切削液关 M05; ……………………………………主轴停止 M30; ……………………………………程序结束 完整粗,精加工程序以上两个实例均只编写了精加工程序,另外可以利用宏调用子程序进行粗加工,下面以第一个 图(工件坐标原点与椭圆中心重合的零件)为例说明. O0001; ……………………………………程序名 #6=95;…………………………………定义总的加工余量 G99 T0101 S500 M03; …………………机床的相关准备工作 G00 X150. Z150. M08; …………………程序起点位置切削液开 G00 X#6 Z101.;………………………程序循环起点 N10 #6=#6-5;……………………………每循环完一次 X 向进 5 M98 P0002; ……………………………子程序的调用 IF [#6GE0]GOTO10; ……………………执行 N10 到 IF 之间的语句 G00 .; ………………………快退到换刀点 M05; ……………………………………主轴停止 M30; ……………………………………主程序结束 O0002 子程序 #1=100; ………………………………用#1 指定椭圆加工 Z 向起点值 #2=100; ………………………………用#2 指定长半轴 #3=50; ………………………………用#3 指定短半轴 WHILE[#1GE-80]DO1; ………………于-80 时执行 DO1 到 END1 之间的程序 #4=#3*SQRT[1-#1*#1/[#2*#2]]; … 计算 X 值,把数学公式用变量替代第 7 页 共 8 页 河北师范大学职业技术学院毕业论文 G01 X[#4*2+#6] Z#1 ; ………进行直线 #1=#; ………………………步距 ,即 Z 值递减量为 END1; ……………………………循环语句结束 G01Z-110 ; ……………………加工圆柱面 X102.; …………………………平圆柱的阶梯端面 G00 Z101.; ……………………Z 向退刀 X#6;……………………………X 向退刀循环起点 M99; ……………………………子程序结束并返回主程序 除了用标准方程加工椭圆外,还可以用参数方程加工椭圆曲线.在这里就不一一阐述了. 加工椭圆的注意事项利用数控车床加工椭圆曲线,应注意以下几点: (1)车削后工件的精度与编程时所选择的步距有关.步距值越小,加工精度越高;但是减小步距 会造成数控系统工作量加大,运算繁忙,影响进给速度的提高,从而降低加工效率.因此, 必须根据加工要求合理选择步距,一般在满足加工要求前提下,尽可能选取较大的步距. (2)对于椭圆轴中心与 Z 轴不重合的零件,需要将工件坐标系进行偏置后,然后按文中所述的方 法进行加工. 结论不同的加工方案就会出现不同的加工路径,每一条加工路径都有其各自的特色,有的会是加工 效率高,但是机床和刀具的损耗大,不宜于大批量加工;而有的加工路径则效率适中,机床和刀具 的损耗相对较小,从而在大批量生产时,零件的尺寸精度波动比较小. 在使用宏程序编程,大部分零件尺寸和工艺参数可以传递到宏程序中,程序的修改比较方便. 图样改变时,仅需修改几个参数,因此,柔性好,极易实现系列化生产.另外,使用宏程序除了能 加工椭圆面外,还可以加工抛物线,双曲线等非圆曲线,有效的扩展数控机床的加工范围,提高加 工效率和品质,充分发挥机床的使用价值. 主要参考文献 (1) 卢增怀.数控车床上椭圆的编程与零件的加工.机械加工. 2007/5/66 (2) 孙摘茂.数控机床加工编程技术〔M]北京:机械工业出版社 2004. (3) 北京发那克机电有限公司.BEIJING-FANUCOM 操作编程说明书 [Z]. 北 京 .北京发那 克机电有限公司 2000. 1998 (4) 严爱珍 机床数控原理与系统 北京 机械工业出版社 (5) 郭培全 数控机床编程与应用 北京 机械工业出版社 2000 (6) 于华 数控机床编程与实例 北京 机械工业出版社 1996 第 8 页 共 8 页
毕业论文 一,我国数控系统的发展史 1.我国从1958年起,由一批科研院所,高等学校和少数机床厂起步进行数控系统的研制和开发。由于受到当时国产电子元器件水平低,部门经济等的制约,未能取得较大的发展。 2.在改革开放后,我国数控技术才逐步取得实质性的发展。经过“六五"(81----85年)的引进国外技术,“七五”(86------90年)的消化吸收和“八五”(91~一-95年)国家组织的科技攻关,才使得我国的数控技术有了质的飞跃,当时通过国家攻关验收和鉴定的产品包括北京珠峰公司的中华I型,华中数控公司的华中I型和沈阳高档数控国家工程研究中心的蓝天I型,以及其他通过“国家机床质量监督测试中心”测试合格的国产数控系统如南京四开公司的产品。 3.我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。从1 9 9 5年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤其是在1 9 9 9年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。 三,数控车的工艺与工装削 阅读:133 数控车床加工的工艺与普通车床的加工工艺类似,但由于数控车床是一次装夹,连续自动加工完成所有车削工序,因而应注意以下几个方面。 1. 合理选择切削用量 对于高效率的金属切削加工来说,被加工材料、切削工具、切削条件是三大要素。这些决定着加工时间、刀具寿命和加工质量。经济有效的加工方式必然是合理的选择了切削条件。 切削条件的三要素:切削速度、进给量和切深直接引起刀具的损伤。伴随着切削速度的提高,刀尖温度会上升,会产生机械的、化学的、热的磨损。切削速度提高20%,刀具寿命会减少1/2。 进给条件与刀具后面磨损关系在极小的范围内产生。但进给量大,切削温度上升,后面磨损大。它比切削速度对刀具的影响小。切深对刀具的影响虽然没有切削速度和进给量大,但在微小切深切削时,被切削材料产生硬化层,同样会影响刀具的寿命。 用户要根据被加工的材料、硬度、切削状态、材料种类、进给量、切深等选择使用的切削速度。 最适合的加工条件的选定是在这些因素的基础上选定的。有规则的、稳定的磨损达到寿命才是理想的条件。 然而,在实际作业中,刀具寿命的选择与刀具磨损、被加工尺寸变化、表面质量、切削噪声、加工热量等有关。在确定加工条件时,需要根据实际情况进行研究。对于不锈钢和耐热合金等难加工材料来说,可以采用冷却剂或选用刚性好的刀刃。 2. 合理选择刀具 1) 粗车时,要选强度高、耐用度好的刀具,以便满足粗车时大背吃刀量、大进给量的要求。 2) 精车时,要选精度高、耐用度好的刀具,以保证加工精度的要求。 3) 为减少换刀时间和方便对刀,应尽量采用机夹刀和机夹刀片。 3. 合理选择夹具 1) 尽量选用通用夹具装夹工件,避免采用专用夹具; 2) 零件定位基准重合,以减少定位误差。 4. 确定加工路线 加工路线是指数控机床加工过程中,刀具相对零件的运动轨迹和方向。 1) 应能保证加工精度和表面粗糙要求; 2) 应尽量缩短加工路线,减少刀具空行程时间。 5. 加工路线与加工余量的联系 目前,在数控车床还未达到普及使用的条件下,一般应把毛坯上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则需注意程序的灵活安排。 6. 夹具安装要点 目前液压卡盘和液压夹紧油缸的连接是靠拉杆实现的,如图1。液压卡盘夹紧要点如下:首先用搬手卸下液压油缸上的螺帽,卸下拉管,并从主轴后端抽出,再用搬手卸下卡盘固定螺钉,即可卸下卡盘。 四,进行有效合理的车削加工 阅读:102 有效节省加工时间 Index公司的G200车削中心集成化加工单元具有模块化、大功率双主轴、四轴联动的功能,从而使加工时间进一步缩短。与其他借助于工作轴进行装夹的概念相反,该产品运用集成智能加工单元可以使工件自动装夹到位并进行加工。换言之,自动装夹时,不会影响另一主轴的加工,这一特点可以缩短大约10%的加工时间。 此外,四轴加工非常迅速,可以同时有两把刀具进行加工。当机床是成对投入使用的时候,效率的提高更为明显。也就是说,常规车削和硬车可以并行设置两台机床。 常规车削和硬车之间的不同点仅仅在于刀架和集中恒温冷却液系统。但与常规加工不同的是:常规加工可用两个刀架和一个尾架进行加工;而硬车时只能使用一个刀架。在两种类型的机床上都可进行干式硬加工,只是工艺方案的制造者需要精心设计平衡的节拍时间,而Index机床提供的模块结构使其具有更强的灵活性。 以高精度提高生产率 随着生产效率的不断提高,用户对于精度也提出了很高的要求。采用G200车削中心进行加工时,冷启动后最多需要加工4个工件,就可以达到±6mm的公差。加工过程中,精度通常保持在2mm。所以Index公司提供给客户的是高精度、高效率的完整方案,而提供这种高精度的方案,需要精心选择主轴、轴承等功能部件。 G200车削中心在德国宝马Landshut公司汽车制造厂的应用中取得了良好的效果。该厂不仅生产发动机,而且还生产由轻金属铸造而成的零部件、车内塑料装饰件和转向轴。质量监督人员认为,其加工精度非常精确:连续公差带为±15mm,轴承座公差为±。 此外,加工的万向节使用了Index公司全自动智能加工单元。首批的两台车削中心用来进行工件打号之前的预加工,加工后进行在线测量,然后通过传送带送出进行滚齿、清洗和淬火处理。最后一道工序中,采用了第二个Index加工系统。由两台G200车削中心对转向节的轴承座进行硬车。在机床内完成在线测量,然后送至卸料单元。集成的加工单元完全融合到车间的布局之中,符合人类工程学要求,占地面积大大减少,并且只需两名员工看管制造单元即可。 五,数控车削加工中妙用G00及保证尺寸精度的技巧 数控车削加工技术已广泛应用于机械制造行业,如何高效、合理、按质按量完成工件的加工,每个从事该行业的工程技术人员或多或少都有自己的经验。笔者从事数控教学、培训及加工工作多年,积累了一定的经验与技巧,现以广州数控设备厂生产的GSK980T系列机床为例,介绍几例数控车削加工技巧。 一、程序首句妙用G00的技巧 目前我们所接触到的教科书及数控车削方面的技术书籍,程序首句均为建立工件坐标系,即以G50 Xα Zβ作为程序首句。根据该指令,可设定一个坐标系,使刀具的某一点在此坐标系中的坐标值为(Xα Zβ)(本文工件坐标系原点均设定在工件右端面)。采用这种方法编写程序,对刀后,必须将刀移动到G50设定的既定位置方能进行加工,找准该位置的过程如下。 1. 对刀后,装夹好工件毛坯; 2. 主轴正转,手轮基准刀平工件右端面A; 3. Z轴不动,沿X轴释放刀具至C点,输入G50 Z0,电脑记忆该点; 4. 程序录入方式,输入G01 W-8 F50,将工件车削出一台阶; 5. X轴不动,沿Z轴释放刀具至C点,停车测量车削出的工件台阶直径γ,输入G50 Xγ,电脑记忆该点; 6. 程序录入方式下,输入G00 Xα Zβ,刀具运行至编程指定的程序原点,再输入G50 Xα Zβ,电脑记忆该程序原点。 上述步骤中,步骤6即刀具定位在XαZβ处至关重要,否则,工件坐标系就会被修改,无法正常加工工件。有过加工经验的人都知道,上述将刀具定位到XαZβ处的过程繁琐,一旦出现意外,X或Z轴无伺服,跟踪出错,断电等情况发生,系统只能重启,重启后系统失去对G50设定的工件坐标值的记忆,“复位、回零运行”不再起作用,需重新将刀具运行至XαZβ位置并重设G50。如果是批量生产,加工完一件后,回G50起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系。鉴于上述程序首句使用G50建立工件坐标系的种种弊端,笔者想办法将工件坐标系固定在机床上,将程序首句G50 XαZβ改为G00 Xα Zβ后,问题迎刃而解。其操作过程只需采用上述找G50过程的前五步,即完成步骤1、2、3、4、5后,将刀具运行至安全位置,调出程序,按自动运行即可。即使发生断电等意外情况,重启系统后,在编辑方式下将光标移至能安全加工又不影响工件加工进程的程序段,按自动运行方式继续加工即可。上述程序首句用 G00代替G50的实质是将工件坐标系固定在机床上,不再囿于G50 Xα Zβ程序原点的限制,不改变工件坐标系,操作简单,可靠性强,收到了意想不到的效果。中国金属加工在线 二、控制尺寸精度的技巧 1. 修改刀补值保证尺寸精度 由于第一次对刀误差或者其他原因造成工件误差超出工件公差,不能满足加工要求时,可通过修改刀补使工件达到要求尺寸,保证径向尺寸方法如下: a. 绝对坐标输入法 根据“大减小,小加大”的原则,在刀补001~004处修改。如用2号切断刀切槽时工件尺寸大了,而002处刀补显示是,则可输入,减少2号刀补。 b. 相对坐标法 如上例,002刀补处输入,亦可收到同样的效果。 同理,对于轴向尺寸的控制亦如此类推。如用1号外圆刀加工某处轴段,尺寸长了,可在001刀补处输入。 2. 半精加工消除丝杆间隙影响保证尺寸精度 对于大部分数控车床来说,使用较长时间后,由于丝杆间隙的影响,加工出的工件尺寸经常出现不稳定的现象。这时,我们可在粗加工之后,进行一次半精加工消除丝杆间隙的影响。如用1号刀G71粗加工外圆之后,可在001刀补处输入,调用G70精车一次,停车测量后,再在001刀补处输入,再次调用G70精车一次。经过此番半精车,消除了丝杆间隙的影响,保证了尺寸精度的稳定。 3. 程序编制保证尺寸精度 a. 绝对编程保证尺寸精度 编程有绝对编程和相对编程。相对编程是指在加工轮廓曲线上,各线段的终点位置以该线段起点为坐标原点而确定的坐标系。也就是说,相对编程的坐标原点经常在变换,连续位移时必然产生累积误差,绝对编程是在加工的全过程中,均有相对统一的基准点,即坐标原点,故累积误差较相对编程小。数控车削工件时,工件径向尺寸的精度一般比轴向尺寸精度高,故在编写程序时,径向尺寸最好采用绝对编程,考虑到加工及编写程序的方便,轴向尺寸常采用相对编程,但对于重要的轴向尺寸,最好采用绝对编程。 b. 数值换算保证尺寸精度 很多情况下,图样上的尺寸基准与编程所需的尺寸基准不一致,故应先将图样上的基准尺寸换算为编程坐标系中的尺寸。如图2b中,除尺寸外,其余均属直接按图2a标注尺寸经换算后而得到的编程尺寸。其中, φ、φ16mm及三个尺寸为分别取两极限尺寸平均值后得到的编程尺寸。 4. 修改程序和刀补控制尺寸 数控加工中,我们经常碰到这样一种现象:程序自动运行后,停车测量,发现工件尺寸达不到要求,尺寸变化无规律。如用1号外圆刀加工图3所示工件,经粗加工和半精加工后停车测量,各轴段径向尺寸如下:φ、φ及φ。对此,笔者采用修改程序和刀补的方法进行补救,方法如下: a. 修改程序 原程序中的X30不变,X23改为,X16改为,这样一来,各轴段均有超出名义尺寸的统一公差; b. 改刀补 在1号刀刀补001处输入。 经过上述程序和刀补双管齐下的修改后,再调用精车程序,工件尺寸一般都能得到有效的保证。 数控车削加工是基于数控程序的自动化加工方式,实际加工中,操作者只有具备较强的程序指令运用能力和丰富的实践技能,方能编制出高质量的加工程序,加工出高质量的工件。 六,数控机床故障排除方法及其注意事项 由于经常参加维修任务,有些维修经验,现结合有关理论方面的阐述,在以下列出,希望抛砖引玉。 一、故障排除方法 (1)初始化复位法:一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。 (2)参数更改,程序更正法:系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。 (3)调节,最佳化调整法:调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某厂维修中,其系统显示器画面混乱,经调节后正常。如在某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。 最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。 (4)备件替换法:用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是目前最常用的排故办法。 (5)改善电源质量法:目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。 (6)维修信息跟踪法:一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。 二、维修中应注意的事项 (1)从整机上取出某块线路板时,应注意记录其相对应的位置,连接的电缆号,对于固定安装的线路板,还应按前后取下相应的压接部件及螺钉作记录。拆卸下的压件及螺钉应放在专门的盒内,以免丢失,装配后,盒内的东西应全部用上,否则装配不完整。 (2)电烙铁应放在顺手的前方,远离维修线路板。烙铁头应作适当的修整,以适应集成电路的焊接,并避免焊接时碰伤别的元器件。 (3)测量线路间的阻值时,应断电源,测阻值时应红黑表笔互换测量两次,以阻值大的为参考值。 (4)线路板上大多刷有阻焊膜,因此测量时应找到相应的焊点作为测试点,不要铲除焊膜,有的板子全部刷有绝缘层,则只有在焊点处用刀片刮开绝缘层。 (5)不应随意切断印刷线路。有的维修人员具有一定的家电维修经验,习惯断线检查,但数控设备上的线路板大多是双面金属孔板或多层孔化板,印刷线路细而密,一旦切断不易焊接,且切线时易切断相邻的线,再则有的点,在切断某一根线时,并不能使其和线路脱离,需要同时切断几根线才行。 (6)不应随意拆换元器件。有的维修人员在没有确定故障元件的情况下只是凭感觉那一个元件坏了,就立即拆换,这样误判率较高,拆下的元件人为损坏率也较高。 (7)拆卸元件时应使用吸锡器及吸锡绳,切忌硬取。同一焊盘不应长时间加热及重复拆卸,以免损坏焊盘。 (8)更换新的器件,其引脚应作适当的处理,焊接中不应使用酸性焊油。 (9)记录线路上的开关,跳线位置,不应随意改变。进行两极以上的对照检查时,或互换元器件时注意标记各板上的元件,以免错乱,致使好板亦不能工作。 (10)查清线路板的电源配置及种类,根据检查的需要,可分别供电或全部供电。应注意高压,有的线路板直接接入高压,或板内有高压发生器,需适当绝缘,操作时应特别注意。 最后,我觉得:维修不可墨守陈规,生搬理论的东西,一定要结合当时当地的实际情况,开阔思路,逐步分析,逐个排除,直至找到真正的故障原因。 综上所述,数控技术的发展是与现代计算机技术、电子技术发展同步的,同时也是根据生产发展的需要而发展的。现在数控技术已经成熟,发展将更深更广更快。未来的CNC系统将会使机械更好用,更便宜。 参考资料:参考资料:1.张耀宗.机械加工实用手册编写组.机械工业出版社,1997
147 浏览 3 回答
284 浏览 4 回答
107 浏览 3 回答
118 浏览 3 回答
358 浏览 5 回答
215 浏览 4 回答
319 浏览 4 回答
282 浏览 5 回答
178 浏览 2 回答
238 浏览 3 回答
80 浏览 6 回答
267 浏览 2 回答
104 浏览 6 回答
306 浏览 3 回答
321 浏览 8 回答