就写老师给的
数学系开题报告范文
开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。
课题名称: 实积分与复积分的比较研究
一、课题的来源及意义
通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。
积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。
二、国内外发展状况及研究背景
国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。
三、课题研究的目标和内容
通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。
(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。
(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。
(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。
四、本课题研究的方法
课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。
五、课题的进度安排:
第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)
第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)
第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)
第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)
第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)
六、参考文献
[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004
[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001
[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002
[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004
[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002
[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79
[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103
[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41
[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)
[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9
数学中的皇冠——数论 数论是研究数的规律,特别是整数性质的数学分支。它与几何学一样,是最古老的而又始终活跃着的数学研究领域。 素数分布是数论最早的研究课题,欧几里得就曾证明过素数有无穷多个。历史上的绝大多数数学家都进行过数论方面的研究。 长期以来,数论只具有在纯粹数学中的基础性质,而被认为没有直接的应用价值。随着计算机的产生与发展给科学技术带来了巨大而深刻的变革。这使数论有了非常广泛的应用途径。 无论什么问题都必须离散化后才能在计算机上进行数值计算,所以离散数学显得日益重要,而离散数学的基础之一就是数论。 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。数学王子—高斯 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 数论的基本内容 数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。 初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。 解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中也使用的是解析数论的方法。 代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题…… 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在 “筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。 其它数学分支学科 算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论、数学物理学 还有下面这个网站可以让你查到你想要的很多东西: 数论研究网
第一次数学危机编辑简介从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。引起不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击,换句话说,如果希帕索斯发现的无理数真的存在,那么古希腊的数学理论体系就完全崩溃了。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。危机产物古典逻辑与欧氏几何学亚里士多德的方法论对于数学方法的影响是巨大的,他指出了正确的定义原理。亚里士多德继承自己老师柏拉图的观念,把定义与存在区分,由某些属性来定义的东西可能未必存在(如正九面体)。另外,定义必须用已存在的定义过的东西来定义,所以必定有些最原始的定义,如点、直线等。而证明存在的方法需要规定和限制。亚里士多德还指出公理的必要性,因为这是演绎推理的出发点。他区别了公理和公设,认为公理是一切科学所公有的真理,而公设则只是某一门学科特有的最基本的原理。他把逻辑规律(矛盾律、排中律等)也列为公理。亚里士多德对逻辑推理过程进行深入研究,得出三段论法,并把它表达成一个公理系统,这是最早的公理系统。他关于逻辑的研究不仅使逻辑形成一个独立学科,而且对数学证明的发展也有良好的影响。亚里士多德对于离散与连续的矛盾有一定阐述。对于潜在的“无穷大”和实在的“无穷大”加以区别。他认为正整数是潜在无穷的,因为任何整数加上1以后总能得到一个新的数。但是他认为所谓“无穷集合”是不存在的。他认为空间是潜在无穷的,时间在延长上是潜在无穷的,在细分上也是潜在无穷的。欧几里得的《几何原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系。这对数学乃至哲学、自然科学的影响一直延续到十九世纪。牛顿的《自然哲学的数学原理》和斯宾诺莎的《伦理学》等都采用了欧几里得《几何原本》的体例。欧几里得的平面几何学为《几何原本》的最初四篇与第六篇。其中有七个原始定义,五个公理和五个公设。他规定了存在的证明依赖于构造。《几何原本》在西方世界成为仅次于《圣经》而流传最广的书籍。它一直是几何学的标准著作。但是它还存在许多缺点并不断受到批评,比如对于点、线、面的定义是不严格的:“点是没有部分的对象”,“线是没有宽度的长度(线指曲线)”,“面是只有长度和宽度的对象”。显然,这些定义是不能起逻辑推理的作用。特别是直线、平面的定义更是从直观来解释的(“直线是同其中各点看齐的线”)。另外,他的公理五是“整体大于部分”,没有涉及无穷量的问题。在他的证明中,原来的公理也不够用,须加上新的公理。特别是平行公设是否可由其他公理、公设推出更是人所瞩目的问题。尽管如此,近代数学的体系特点在其中已经基本上形成了。诞生非欧几何学的诞生欧几里得的《几何原本》是第一次数学危机的产物。尽管它有种种缺点和毛病,毕竟两千多年来一直是大家公认的典范。尤其是许多哲学家,把欧几里得几何学摆在绝对几何学的地位。十八世纪时,大部分人都认为欧几里得几何是物质空间中图形性质的正确理想化。特别是康德认为关于空间的原理是先验综合判断,物质世界必然是欧几里得式的,欧几里得几何是唯一的、必然的、完美的。既然是完美的,大家希望公理、公设简单明白、直截了当。其他的公理和公设都满足了上面的这个条件,唯独平行公设不够简明,像是一条定理。欧几里得的平行公设是:每当一条直线与另外两条直线相交,在它一侧做成的两个同侧内角的和小于两直角时,这另外两条直线就在同侧内角和小于两直角的那一侧相交。在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩啰嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。之后的二千多年,许许多多人曾试图证明这点,有些人开始以为成功了,但是经过仔细检查发现:所有的证明都使用了一些其他的假设,而这些假设又可以从平行公设推出来,所以他们只不过得到一些和平行公设等价的命题罢了。到了十八世纪,有人开始想用反证法来证明,即假设平行公设不成立,企图由此得出矛盾。他们得出了一些推论,比如“有两条线在无穷远点处相交,而在交点处这两条线有公垂线”等等。在他们看来,这些结论不合情理,因此不可能真实。但是这些推论的含义不清楚,也很难说是导出矛盾,所以不能说由此证明了平行公设。从旧的欧几里得几何观念到新几何观念的确立,需要在某种程度上解放思想。首先,要能从二千年来证明平行公设的失败过程中看出这个证明是办不到的事,并且这种不可能性是可以加以证实的;其次,要选取与平行公设相矛盾的其他公设,也能建立逻辑上没有矛盾的几何。这主要是罗巴切夫斯基的开创性工作。要认识到欧几里得几何不一定是物质空间的几何学,欧几里得几何学只是许多可能的几何学中的一种。而几何学要从由直觉、经验来检验的空间科学要变成一门纯粹数学,也就是说,它的存在性只由无矛盾性来决定。虽说象兰伯特等人已有这些思想苗头,但是真正把几何学变成这样一门纯粹数学的是希尔伯特。这个过程是漫长的,其中最主要的一步是罗巴切夫斯基和波耶分别独立地创立非欧几何学,尤其是它们所考虑的无矛盾性是历史上的独创。后人把罗氏几何的无矛盾性隐含地变成欧氏几何无矛盾性的问题。这种利用“模型”和证明“相对无矛盾性”的思想一直贯穿到以后的数学基础的研究中。而且这种把非欧几何归结到大家一贯相信的欧氏几何,也使得大家在接受非欧几何方面起到重要作用。应该指出,非欧几何为广大数学界接受还是经过几番艰苦斗争的。首先要证明第五公设的否定并不会导致矛盾,只有这样才能说新几何学成立,才能说明第五公设独立于别的公理公设,这是一个起码的要求。当时证明的方法是证明“相对无矛盾性”。因为当时大家都承认欧几里得几何学没有矛盾,如果能把非欧几何学用欧几里得几何学来解释而且解释得通,也就变得没有矛盾。而这就要把非欧几何中的点、直线、平面、角、平行等翻译成欧几里得几何学中相应的东西,公理和定理也可用相应欧几里得几何学的公理和定理来解释,这种解释叫做非欧几何学的欧氏模型。对于罗巴切夫斯基几何学,最著名的欧氏模型有意大利数学家贝特拉米于1869年提出的常负曲率曲面模型;德国数学家克莱因于1871年提出的射影平面模型和彭加勒在1882年提出的用自守函数解释的单位圆内部模型。这些模型的确证实了非欧几何的相对无矛盾性,而且有的可以推广到更一般非欧几何,即黎曼创立的椭圆几何学,另外还可以推广到高维空间上。因此,从十九世纪六十年代末到八十年代初,大部分数学家接受了非欧几何学。尽管有的人还坚持欧几里得几何学的独特性,但是许多人明确指出非欧几何学和欧氏几何学平起平坐的时代已经到来。当然也有少数顽固派,如数理逻辑的缔造者弗雷格,至死不肯承认非欧几何学,不过这已无关大局了。非欧几何学的创建对数学的震动很大。数学家开始关心几何学的基础问题,从十九世纪八十年代起,几何学的公理化成为大家关注的目标,并由此产生了希尔伯特的新公理化运动。3第二次数学危机编辑简介早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时间间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。新问题到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。由于运算的完整性和应用范围的广泛性,微积分成为了解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是繁琐。但也正是因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。建立基础十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由魏尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。十九世纪七十年代初,魏尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。同时,魏尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。4第三次数学危机编辑简介经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,称为“理发师悖论”。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。再次产物数理逻辑的发展与一批现代数学的产生。为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经伯奈斯和哥德尔进一步改进和简化,得到伯奈斯——哥德尔集合论公理体系。希尔伯特还建立了元数学。作为对集合论悖论研究的直接成果是哥德尔不完全性定理。美国杰出数学家哥德尔于20世纪30年代提出了不完全性定理。他指出:一个包含逻辑和初等数论的形式系统,如果是协调的,则是不完全的,亦即无矛盾性不可能在本系统内确立;如果初等算术系统是协调的,则协调性在算术系统内是不可能证明的。哥德尔不完全性定理无可辩驳地揭示了形式主义系统的局限性,从数学上证明了企图以形式主义的技术方法一劳永逸地解决悖论问题的不可能性。它实际上告诉人们,任何想要为数学找到绝对可靠的基础,从而彻底避免悖论的种种企图都是徒劳无益的,哥德尔定理是数理逻辑、人工智能、集合论的基石,是数学史上的一个里程碑。美国著名数学家冯·诺伊曼说过:“哥德尔在现代逻辑中的成就是非凡的、不朽的——它的不朽甚至超过了纪念碑,它是一个里程碑,在可以望见的地方和可以望见的未来中永远存在的纪念碑”。时至今日,第三次数学危机还不能说已从根本上消除了,因为数学基础和数理逻辑的许多重要课题还未能从根本上得到解决。然而,人们正向根本解决的目标逐渐接近。可以预料,在这个过程中还将产生许多新的重要成果。参考来源:望采纳~~~
157 浏览 4 回答
280 浏览 4 回答
101 浏览 4 回答
190 浏览 6 回答
102 浏览 4 回答
105 浏览 3 回答
121 浏览 6 回答
207 浏览 5 回答
93 浏览 4 回答
127 浏览 3 回答
145 浏览 4 回答
148 浏览 2 回答
131 浏览 8 回答
252 浏览 4 回答
197 浏览 4 回答