因为传动系统从电动机到主轴,通常为降速运动,接近电动机的传动件转速较高,传递的转矩较小,尺寸小一些;反之。
则在拟定主变速传动系时,应尽可能将传动副较多的变速组安排在前面,将传动副较少的安排在后面。此为前多后少原则。
前密后疏:当变速组的扩大顺序与传动顺序相一致时,前面变速组的传动线分布紧密,而后面变速组传动线分布疏散,在传递相同功率的情况下,转矩较小,设计尺寸也相应较小。
前缓后急,由于电动机到主轴的总趋势是降速运动,在分配各变速组传动比时,为使中间传动轴具有较高的转速,以减小传动件的尺寸,则前面的变速组降速要慢些,后面的要快些,但是中间轴不应过高,以免产生振动、发热和噪音,通常不超过电动机转速。
产品介绍
主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。
主轴箱传动系统的设计,以及主轴箱各部件的加工工艺直接影响机床的性能。如图1左图所示为CA6140型卧式车床主轴箱装配图,图1左图中的a为其展开图,是按图1右图所示的轴线Ⅻ一Ⅳ一Ⅰ一Ⅱ一Ⅲ(Ⅴ)一Ⅵ一Ⅺ一Ⅸ一Ⅹ的剖切面A-A展开后绘出的。
主轴箱位于车床左方的床身上。主轴Ⅵ的回转运动是由电动机输出的恒定转速,通过带轮和各级齿轮的传递实现的,通过主轴箱内滑移齿轮组成不同的传递路线,主轴可获得各级转速。通过操纵机构还可以实现主轴的起动、停止和换向等。
模具-注塑-方便饭盒上盖设计 稳压器盖板冲裁模设计 102机体齿飞面孔双卧多轴组合机床及CAD设计 10t桥式起重机小车运行机构设计 118面板注射模设计 11YQP36预加水盘式成球机设计 200米液压钻机变速箱的设计 20米T梁毕业设计 26手机外壳造型及设计步骤文档 27m3矿用挖掘机斗杆结构有限元分析 300×400数控激光切割机XY工作台部 3L-108空气压缩机曲轴零件 4岩心钻机升降机的设计 6136车床数控改造 6层框架住宅毕业设计结构计算书 8英寸钢管热浸镀锌自动生产线设计 A6140车床尾座体工艺工装设计 AWC机架现场扩孔机设计 BW-100型泥浆泵曲轴箱与液力端特性分析、设计 C618数控车床的主传动系统设计 C616型普通车床改造为经济型数控车床 CA-20地下自卸汽车工作、转向液压系统 CA6140车床后托架的加工工艺与钻床夹具设计 CA6140车床主轴箱的设计 CA6140杠杆加工工艺 CA6140机床后托架加工工艺及夹具设计 CA6140型铝活塞的机械加工工艺设计及夹具设计 CG2-150型仿型切割机 DTⅡ型固定式带式输送机的设计 DTⅡ型皮带机设计 FXS80双出风口笼形转子选粉机 GBW92外圆滚压装置设计 JLY3809机立窑(窑体及卸料部件) JLY3809机立窑(加料及窑罩部件)设计 JLY3809机立窑(总体及传动部件)设计 jx249乘客电梯的PLC控制 jx261组合机床主轴箱及夹具设计 MG132320-W型采煤机左牵引部机壳的加工工艺规程及数控编程 MG250591-WD型采煤机右摇臂壳体的加工工艺规程及数控编程 mj002数控技术和装备发展趋势及对策 mj016注射器盖毕业设计全部 mj020冲压模系统设计(金属) mj027我国数控机床的现状和发展趋势 mj030现在的工艺设计 MQ100门式起重机总体 MR141剥绒机锯筒部工作箱部和总体设计 NK型凝汽式汽轮机调节系统的设计 PF455S插秧机及其侧离合器手柄的探讨和改善设计 PLC控制机械手设计 PLC在高楼供水系统中的应用 Q3110滚筒式抛丸清理机的设计(总装、弹丸循环及分离装置、集尘器设计) Q3110滚筒式抛丸清理机的设计(总装、滚筒及传动机构设计) R175型柴油机机体加工自动线上多功能气压机械手 SF500100打散分级机回转部分及传动设计 SF500100打散分级机内外筒体及原设计改进探讨 SF500100打散分级机总体及机架设计 SPT120推料装置 SSCK20A数控车床主轴和箱体加工编程 T611镗床主轴箱传动设计及尾柱设计 WH212减速机壳体加工工艺及夹具设计 WHX112减速机壳加工工艺及夹具设计 X5020B立式升降台铣床拨叉壳体 X62W铣床主轴机械加工工艺规程与钻床夹具设计 X700涡旋式选粉机 XK5040数控立式铣床及控制系统设计 XKA5032A数控立式升降台铣床自动换刀装置的设计 XQB小型泥浆泵的结构设计 XX包装机总体设计及计量装置设计 Y32-1000四柱压机液压系统设计 YZJ压装机整机液压系统设计 Z30130X31型钻床控制系统的PLC改造 Z3050摇臂钻床预选阀体机械加工工 Z90型电动阀门装置及数控加工工艺的设计 ZL05微型轮式装载机总体设计 ZL15型轮式装载机 ZUO半自动液压专用铣床液压系统设计 “包装机对切部件”设计 “填料箱盖”零件的工艺规程及钻孔夹具设计 Φ1200熟料圆锥式破碎机 Φ3×11M水泥磨总体设计及传动部件设计 板材送进夹钳装置 半精镗及精镗气缸盖导管孔组合机床设计(夹具设计) 半精镗及精镗气缸盖导管孔组合机床设计(镗削头设计) 棒料切割机 杯子的三维设计 笔盖的模具设计 标牌雕刻数控加工工艺设计 拨叉零件工艺分析及加工 插秧机系统设计 叉杆零件 柴油机连杆的加工工艺 柴油机气缸体顶底面粗铣组合机床总体及夹具设计 铲平机的设计 车床变速箱中拔叉及专用夹具设计 车床的大修理 车床数控改造 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计 车载装置升降系统的开发 齿轮架零件的机械加工工艺规程及专用夹具设计 冲大小垫圈复合模 冲击回转钻进技术 出租车计价器系统的设计 传动齿轮工艺设计 垂直多关节机器人臂部和手部设计 粗镗连杆大头孔专用镗床总体及镗削头设计 大模数蜗杆铣刀专用机床设计 大型制药厂热电冷三联供 大型轴齿轮专用机床设计 大直径桩基础工程成孔钻具 带式输送机自动张紧装置设计 带式运输机用的二级圆柱齿轮减速器设计 带位移电反馈的二级电液比例节流阀设计 袋泡茶包装机 设计 单拐曲轴机械加工工艺 单线画线机 低速级斜齿轮零件的机械加工工艺规程 地下升降式自动化立体车库 电动阀门装置及数控加工工艺的设计 电动自行车调速系统的设计 电机机座钻孔组合机床设计 电机炭刷架冷冲压模具设计 电流线圈架塑料模设计 电脑主板回焊炉及控制系统设计 电瓶车充电器外壳的模具设计 电液比例阀设计 钉磨机床设计 端面齿盘的设计与加工 多功能跑步机 多功能文具盒上盖注塑模设计 多功能自动跑步机(机械部分设计) 多用途气动机器人结构设计 惰轮轴工艺设计和工装设计 二级直齿轮减速器设 法兰零件夹具设计1 仿人型机器人总体及臂手部结构设计 放音机机壳注射模设计 分离爪工艺规程和工艺装备设计 盖冒垫片设计说明书.doc 杠杆工艺和工装设计 杠杆设计 高层建筑外墙清洗机---升降机部分的设计 高速数字多功能土槽试验台车的设计 隔水管横焊缝自动对中装置 隔振系统实验台总体方案设计 工程钻机的设计 工艺-曲轴箱零件加工工艺及夹具设计 工艺-支承套零件加工工艺编程及夹具 关节型机器人腕部结构设计 管套压装专机 滚针轴承自动装针机设计 过桥齿轮轴机械加工工艺规程 含油污热解炉机电系统设计 盒形件落料拉深模设计 后钢板弹簧吊耳的工艺和工装设计 湖南Y12型拖拉机轮圈落料与首次 环面蜗轮蜗杆减速器 回转盘工艺规程设计及镗孔工序夹具设计 活塞的机械加工工艺,典型夹具及其CAD设计 货车底盘布置设计 基于118面板注射模设计 基于1BF-160型拔杆粉碎还田机设计 基于1G-100型水旱两用旋耕机设计 基于2BGF— l2o型旋耕播种机的研制与探讨 基于ANSYS的挤出跑步机塑料边条模具的设计及机头的加工仿真 基于AT89C2051单片机的温度控制系统的设计 基于BSG2213宽带砂光机 基于ProE的装载机工作装置的实体建模及运动仿真 基于PROE平台的柴油机机体工艺及三面精镗夹具设计 基于TY395柴油机机体缸孔粗镗组合机床总体及夹具设计 基于UG的摆线针轮行星减速器的设计 基于普通机床的后托架及夹具的设计开发 基于三维的柴油机气缸体三面钻削组合机床总体及后主轴箱设计 基于三维的柴油机气缸体三面钻削组合机床总体及夹具设计 基于三维的柴油机气缸体三面钻削组合机床总体及右主轴箱设计 基于三维的柴油机气缸体三面钻削组合机床总体及左主轴箱设计 机床系统设计 机电产品国际招标投标实施办法 机电一体化-PLC控制电梯 机电一体化-T6113电气控制系统的设计 机电一体化-连杆平行度测量仪 机械手的设计 机械手控制设计 机座工艺设计与工装设计 集成电路塑封自动上料机机架部件设计及性能试验 加工涡轮盘榫槽的卧式拉床夹具 加热缸体注塑模设计 减速器的工艺设计 减速器的整体设计 减速箱体工艺设计与工装设计 渐开线涡轮数控工艺及加工 绞肉机的设计 接机平台、苗木输送系统的设计及总装图 金属切削加工车间设备布局与管理 精密播种机 经济型的数控改造 酒瓶内盖塑料模具设计 卷板机设计 康复机器人的系统设计 颗粒状糖果包装机设计 壳体的工艺与工装的设计 可调速钢筋弯曲机的设计 空气滤清器壳正反拉伸复合模设计 空气压缩机V带校核和噪声处理 空心铆钉机总体及送料系统设计 冷连轧机液压压下控制系统中的几个关键问题的理论研究 冷轧带钢制造中分布式计算机控制系统的研究-3-3 冷轧机 立式组合机床液压系统 连杆零件加工工艺 铝壳体压铸模具设计 滤油器支架模具设计 螺旋管状面筋机总体及坯片导出装置设计 螺旋千斤顶设计 模具-冰箱调温按钮塑模设计 膜片式离合器的设计 磨粉机设计 某大型水压机的驱动系统和控制系统 内循环式烘干机总体及卸料装置设计 盘工艺规程设计及镗孔工序夹具设计 平面关节型机械手设计 瓶塞注塑模 普通钻床改造为多轴钻床 气缸体双工位专用钻床总体及左主轴箱设计 气门摇臂轴支座 汽车半轴 桥式起重机小车运行机构设计 青饲料切割机 全自动洗衣机控制系统的设计 乳化液泵的设计 三自由度圆柱坐标型工业机器人设计_1 三坐标数控磨床设计 设计-单级圆柱齿轮减速器 设计-搅拌器的设计 设计“CA6140法兰盘”零件的机械加工工艺规程及工艺装备 设计机床-S195柴油机机体三面精镗组合机床总体设计及夹具设计 生产线上运输升降机的自动化设计 十字接头零件分析 式升降台铣床拔叉壳体工艺规程制订 手机翻盖注射模的设计 输出轴工艺与工装设计 数控车削中心主轴箱及自驱动刀架的设计 数控机床自动夹持搬运装置 数字娱乐产品设计之硬盘MP4设计 双齿减速器设计 双铰接剪叉式液压升降台的设计 双柱式机械式举升机设计 水泥瓦模具设计与制造工艺分析 水平多关节机器人总体及腰臂部设计 水闸的设计 塑料齿轮模具设计及其型腔仿真加工 塑料模mj004 塑料模具设计 塑料碗注射模设计 台灯罩模具设计及其型腔仿真加工 套筒机械加工工艺规程制订 体齿飞面孔双卧多轴组合机床及CAD设计 同轴式二级圆柱齿轮减速器的设计 推动架”零件的机械加工工艺及 拖拉机变速箱体上四个定位平面专用夹具及组合机床设计 椭圆盖板的宏程序编程与自动编程 挖掘装载机工作装置结构设计 外圆磨床设计 弯管接头塑料模设计 万能材料试验机CAD 万能外圆磨床液压传动系统设计 微型电动机转子冲孔落料模的加工 微型轴承外表面缺陷自动检测线设计 涡轮盘液压立拉夹具 卧式钢筋切断机的设计 五层教学楼(计算书及CAD建筑图 五金-笔记本电脑壳上壳冲压模设计 五金-带槽三角形固定板冲圆孔、冲槽、落料连续模设计 五金-盖冒垫片 五金-护罩壳侧壁冲孔模设计 五金-护罩壳侧壁冲孔模设计2 锡林右轴承座组件工艺及夹具设计 巷道堆垛类自动化立体车库 巷道式自动化立体车库升降部分 消防环保 小电机外壳造型和注射模具设计 小型轧钢机设计 校直机设计 斜齿圆柱齿轮减速器装配图及其零件图 斜联结管数控加工和工艺 星轮加工工艺及夹具设计 型普通车床改造为经济型数控车床 型卧式车床的修理与实现 型星齿轮的注塑模设计 虚拟建模对于机械产品设计研究。 宣化某毛纺厂废水处理工程工艺设计 旋转门的设计 压燃式发动机油管残留测量装置设计 摇臂壳体的加工工艺规程及数控编程 液压绞车设计 液压式双头套皮辊机 一套毕业设计设计说明书(轴盖复合模的设计与制造) 引部机壳的加工工艺规程及数控编程 用于带式运输机上的传动及减速装置 玉米脱粒机设计 载机工作装置的实体建模及运动仿真 支撑掩护式液压支架的设计 支架零件图设计 知识竞赛抢答器PLC设计 织机导板零件数控加工工艺与工装设计 直动型弧面凸轮机械手的设计 制冷专业毕业设计(家用空调) 轴机械加工工艺规程与钻床夹具设计 轴加工工艺设计和加工程序编制 轴类零件机械加工工艺规程设计 轴向柱塞泵设计 注射机模具 注塑-PDA模具设计 注塑-wk外壳注塑模实体设计过程 注塑-底座注塑模 注塑-电流线圈架塑料模设 计 注塑-对讲机外壳注射模设计 注塑-阀销注射模设计 注塑-肥皂盒模具设计 注塑-闹钟后盖毕业设计 注塑-普通开关按钮模具设计 注塑-软管接头模具设计 注塑-手机充电器的模具设计 注塑-鼠标上盖注射模具设计 注塑-塑料挂钩座注射模具设计 注塑-塑料架注射模具设计 注塑-小电机外壳造型和注射模具设计 注塑-斜齿轮注射模 注塑-心型台灯塑料注塑模具毕业设计 注塑-旋纽模具的设计 注塑-牙签合盖注射模设计 注塑-游戏机按钮注塑模具设计 自动上料机机架部件设计及性能试验 自动洗衣机行星齿轮减速器的设计 总泵缸体夹具设计 总泵缸体加工 组合机床设计 组合机床主轴箱及夹具设计 组合件数控车工艺与编程 组合铣床的总体设计和主轴箱设计 钻法兰四孔夹具 以上目录来自:
数控铣床的主轴箱结构设计难。主轴箱是很重要的部件,在数控机床的设计中主轴箱的设计也是最为复杂的一项,主轴箱为多级齿轮传动,通过传动系统,经箱体内各个位置上的传动轴和传动齿轮。
常用数控铣床可分为线轨数控铣床 、硬轨数控铣床等。 数控铣床(线轨)具有精度高、刚性好、噪音小,操作简单、维修方便等优点。工件一次装夹可以完成平面、槽、斜面及各种复杂三维曲面的铣削,及钻孔,扩孔、铰孔和镗孔等。是复杂型腔、模具、箱体类零件加工的理想设备。数控铣床(硬轨) 具有精度高、刚性好、噪音小,操作简单、维修方便等优点。工件一次装夹可以完成平面、槽、斜面及各种复杂三维曲面的铣削,及钻孔,扩孔、铰孔和镗孔等。是复杂型腔、模具、箱体类零件加工的理想设备。表1-1第二章 方案设计 本次设计的数控铣床主轴箱是串联在交流调频主轴电机后的无级变速箱,属于机械无级变速装置。它是利用摩擦力来传递转矩,通过连续改变摩擦传动副工作半径来实现无级变速。由于它的变速范围小,是恒转矩传动,适合铣床的传动。 第三章 主传动设计 驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin是调节电枢电压的方法来调速的,属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4500r/min,最大切削功率,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500 r/min。 转速图的拟定根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围 Rdp=nmax/nd=4500/1500=3 (3-1)而主轴要求的恒功率转速范围Rnp= nmax/nd=4500/150=30 ,远大于交流主轴电动机所能提供的恒功率转速范围,所以必须串联变速机构的方法来扩大其恒功率转速范围。设计变速箱时,考虑到机床结构的复杂程度,运转的平稳性等因素,取变速箱的公比Фf等于交流主轴电动机的恒功率调速范围Rdp,即Фf=Rdp=3,功率特性图是连续的,无缺口和无重合的。变速箱的变速级数Z=lg Rnp/lg Rdp=lg30/ lg 3= (3-2)取 Z=3 确定各齿轮副的齿数: 取S=114由u=2 得Z1=38 Z1′=76由u= 得Z2=68 Z2′=46由u= 得Z3=94 Z3′=20如取总效率η=,则电动机功率P=。可选用北京数控设备厂的BESK-8型交流主轴电动机,连续额定输出功率为。由此拟定主传动系统图、转速图以及主轴功率特性图分别如图3-1、图3-2、图3-3。传动轴除应满足强度要求外,还应满足刚度要求。强度要求保证轴在反复载荷和扭转载荷作用下不发生疲劳破坏。机床主传动系统精度要求较高,不允许有较大的变形。因此疲劳强度一般不是主要矛盾。除了载荷比较大的情况外,可以不必验算轴的强度。刚度要求轴在载荷下(弯曲,轴向,扭转)不致产生过大的变形(弯曲,失稳,转角)。如果刚度不够,轴上的零件如齿轮,轴承等由于轴的变形过大而不能正常工作,或者产生振动和噪音,发热,过早磨损而失效。因此,必须保证传动轴有足够的刚度。通常,先按扭转刚度轴的直径,画出草图后,再根据受力情况,结构布置和有关尺寸,验算弯曲刚度。计算转速nj是传动件传递全部功率时的最低转速,各个传动轴上的计算转速可以从转速图上直接得出如表2-1所示。表3-1 各轴的计算转速轴 Ⅰ Ⅱ III计算转速(r/min) 1500 750 173各轴功率和扭矩计算: 已知一级齿轮传动效率为(包括轴承),则:Ⅰ轴:P1=Pd×× KW Ⅱ轴:P2=P1×× KW III轴:P3=P2×× KW Ⅰ轴扭矩:T1=9550P1/n1 =9550× Ⅱ轴扭矩:T2=9550P2/n2 =9550×轴扭矩:T3=9550P3/n3 =9550×[φ]是每米长度上允许的扭转角(deg/m),可根据传动轴的要求选取,其选取的原则如表2-2所示。表3-2 许用扭转角选取原则轴 主轴 一般传动轴 较低的轴[φ](deg/m) 根据表2-2确定各轴所允许的扭转角如表2-3所示。表3-3 许用扭转角的确定轴 Ⅰ Ⅱ III[φ](deg/m) 1 1 1把以上确定的各轴的输入功率N=、计算转速nj(如表2-1)、允许扭转角[φ](如表2-3)代入扭转刚度的估算公式 (3-3)可得各个传动轴的估算直径:Ⅰ轴: d1= 取d1=30mm Ⅱ轴: d2= 取d1=35mm主轴轴径尺寸的确定:已知铣床最大加工直径为Dmax=400mm, 则:主轴前轴颈直径 D1=±15=85~115mm 取D1=95mm主轴后轴颈直径 D2=(~)D1=67~81mm 取D2=75mm主轴内孔直径 d=±10=35~55mm 取d=齿轮模数的估算按接触疲劳强度和弯曲疲劳强度计算齿轮模数比较复杂,而且有些系数只有在齿轮的各参数都已知方可确定,故只有在装配草图画完后校验用。在画草图时用经验公式估算,根据估算的结果然后选用标准齿轮的模数。齿轮模数的估算有两种方法,第一种是按齿轮的弯曲疲劳进行估算,第二种是按齿轮的齿面点蚀进行估算,而这两种方法的前提条件是各个齿轮的齿数必须已知,所以必须先给出各个齿轮的齿数。根据齿轮不产生根切的基本条件:齿轮的齿数不小于17,在该设计中,即最小齿轮的齿数不小于17。而由于Z3,Z3’这对齿轮有最大的传动比,各个传动齿轮中最小齿数的齿轮必然是Z3’。取Z3’=20,S=114,则Z3=94。从转速图上直接看出直接可以看出Z3的计算转速是750r/min。根据齿轮弯曲疲劳估算公式mω = (3-4)根据齿轮接触疲劳强度估算公式计算得: m=由于受传动轴轴径尺寸大小限制,选取齿轮模数为m =3mm,对比上述结果,可知这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,而且考虑到两传动轴的间距,故取同一变速组中的所有齿轮的模数都为m=3mm。现将各齿轮齿数和模数列表如下:表3-4 齿轮的估算齿数和模数列表齿轮 Z0 Z0’ Z1 Z1’ Z2 Z2’ Z3 Z3’齿数 35 70 38 76 68 46 94 20模数(mm) 3 3 3 3 3 3 3 3传动零件,轴,轴承是主轴部件的主要零件,其它零件的结构和尺寸是根据主要零件的位置和结构而定。所以设计时先画主要零件,后画其它零件,先画传动零件的中心线和轮廓线,后画结构细节。1)传动轴的估算这一步在前面已经做了计算。2)齿轮相关尺寸的计算为了确定轴的轴向距离,齿轮齿宽的确定是必须的。 而容易引起振动和噪声,一般取齿宽系数Φm =(6-10)m。这里取齿宽系数Φm=10, 则齿宽B=Φm×m=10×3=30mm.现将各个齿轮的齿厚确定如表3-1所示。表4-1 各齿轮的齿厚齿轮 Z1 Z1′ Z2 Z2′ Z3 Z3′齿厚(mm) 30 30 30 30 30 30齿轮的直径决定了各个轴之间的尺寸,所以在画展开图草图前,各个齿轮的尺寸必须算出。现将主轴部件中各个齿轮的尺寸计算如表3-2所示。表4-2 各齿轮的直径齿轮 Z1 Z1′ Z2 Z2′ Z3 Z3′分度圆直径(mm) 114 228 204 138 282 60 齿顶圆直径(mm) 120 234 210 144 288 66 齿根圆直径(mm) Z0 Z0’105 210111 由表3-2可以计算出各轴之间的距离,现将它们列出如表4-3所示。表4-3 各轴的中心距轴 ⅠⅡ ⅡⅢ距离(mm) 160 1753)确定齿轮的轴向布置为避免同一滑移齿轮变速组内的两对齿轮同时啮合,两个固定齿轮的间距,应大于滑移齿轮的宽度,一般留有间隙1-2mm,所以首先设计滑移齿轮。Ⅱ轴上的滑移齿轮的两个齿轮轮之间必须留有用于齿轮加工的间隙,插齿时,当模数在1-2mm范围内时,间隙必须不小于5mm,当模数在范围内时,间隙必须不小于6mm,且应留有足够空间滑移,据此选取该滑移齿轮三片齿轮之间的间隙分别为d1= 45mm,d2=8mm。由滑移齿轮的厚度以及滑移齿轮上的间隙可以得出主轴上的齿轮的间隙。现取齿轮之间的间距为82mm和45mm。 图4-1 齿轮的轴向间距4)轴承的选择及其配置主轴组件的滚动轴承既要有承受径向载荷的径向轴承,又要有承受两个方向轴向载荷的推力轴承。轴承类型及型号选用主要应根据主轴的刚度,承载能力,转速,抗振性及结构要求合理的进行选定。同样尺寸的轴承,线接触的滚子轴承比电接触的球轴承的刚度要高,但极限转速要低;多个轴承的承载能力比单个轴承的承载能力要大;不同轴承承受载荷类型及大小不同;还应考虑结构要求,如中心距特别小的组合机床主轴,可采用滚针轴承。为了提高主轴组件的刚度,通常采用轻型或特轻型系列轴承,因为当轴承外径一定时,其孔径(即主轴轴颈)较大。通常情况下,中速重载采用双列圆柱滚子轴承配双向推力角接触球轴承(如配推力轴承,则极限转速低),或者成对圆锥滚子轴承,其结构简单,但是极限转速较低,如配空心圆锥滚子轴承,其极限转速显著提高,但成本也相应的提高了。高速轻载采用成组角接触球轴承,根据轴向载荷的大小分别选用25°或 15°的接触角。轴向载荷为主且精度要求不高时,选用推力轴承配深沟球轴承,精度要求较高时,选用向心推力轴承。该设计的主轴不仅有刚度高的要求,而且有转速高的要求,所以在选择主轴轴承时,刚度和速度这两方面都要考虑。主轴前轴承采用3182119型轴承一个,后支承采用30215型和8215型轴承各一个。 各轴结构的设计I轴的一端与电动机相连,将其结构草图绘制如下图4—2所示 图4—2II轴安装滑移齿轮,其结构如草图3—2所示 图4-3III轴其结构完全按标准确定,根据轴向的尺寸将结构简图绘制如下图4—4所示III轴其结构完全按标准确定,根据轴向的尺寸将结构简图绘制如下图4—4所示 图 主轴组件的刚度和刚度损失的计算:最佳跨距的确定:取弹性模量E= ,D=(95+75)/2=85;主轴截面惯距 截面面积:A= 主轴最大输出转矩: 床身上最大回转直径约为最大加工直径的60%,即240mm。故半径为 Fy=故总切削力为: F= =估算时,暂取L0/a=3,即取3x120=360mm.前支承支反力 后支承支反力 取 则 则 因在上式计算中,忽略了ys的影响,故L0应稍大一点,取L0=300mm计算刚度损失:取L=385mm,χ=因在上式计算中,忽略了ys的影响,故L0应稍大一点,取L0=300mm计算刚度损失:取L=385mm,χ=表4-4 由 公式 弹 性 主 轴 y1 弹性支承k 总 柔 度 总刚度 弯曲变形 yb 剪切变形ys 前支承 后支承 悬伸段 跨距段 悬伸段 跨距段 L=385 ×10-7 ×10-6 ×10-7 ×10-7 ×10-7 ×10-7 ×10-7 ×105 % % % % % % 100% L0=300 ×10-7 ×10-6 ×10-7 ×10-7 ×10-7 ×10-7 ×10-7 ×105 % % % % % % 100% 由L≠L0引起的刚度损失约为%,可知,主轴刚度损失较小,选用的轴承型号及支承形式都能满足刚度要求。第五章 零件的校核齿轮强度校核校核II轴齿轮 校核齿数为20的即可,确定各项参数P=, n=750r/minⅡ轴扭矩: T2=9550P2/n2 =9550 (5-1)确定动载系数: =齿轮精度为7级,由《机械设计》查得使用系数 非对称 查《机械设计》得确定齿间载荷分配系数: = (5-2) = = 100N/m由《机械设计》查得 =确定动载系数: =1 查表 10-5 计算弯曲疲劳许用应力,由图查得小齿轮的弯曲疲劳强度极限 540MPa 图10-18查得 = (5-3) 故满足要求。传动轴挠度的验算:II轴的校核:通过受力分析,在一轴的三对啮合齿轮副中,中间的两对齿轮对II轴中点处的挠度影响最大,所以,选择中间齿轮啮合来进行校核已知d=60mm, E= ,b=30mm ,x=180mm (5-4) 。第六章 心得体会在将近两周的不懈努力下,课程设计终于完成了。从开始直到设计基本完成,我有许多感想。这是我们比较独立的在自己的努力下做一个与课程相关的设计。在这次设计中暴露出我的许多薄弱环节,很多学过的知识不能学以致用,直到做了这次作业后才能渐渐掌握,以前学过的东西自己并不是都掌握了,很多知识只是照搬书本,并非自己所理解,经过这次设计又加深了理解。而且,在一些计算过程中我和我的同学进行了计算方面的讨论,这又加强了我的合作能力。做课设的期间不仅手工制图得到了巩固,而且AutoCAD画图软件也在不断练习中进一步加深,学会了如何去应用工程手册,如何合理的选用相关参数,以及一些设计经验。总的说来,我感觉这次课程设计让我的许多方面都得到了锻炼,这不仅仅是知识方面的,还有能力方面东西。总之我学到了我想学的东西,这次课程设计使我受益匪浅。
你好 专业代做毕业论文 看名字+
323 浏览 2 回答
355 浏览 2 回答
139 浏览 5 回答
114 浏览 3 回答
116 浏览 4 回答
105 浏览 4 回答
110 浏览 3 回答
218 浏览 4 回答
259 浏览 4 回答
149 浏览 3 回答
90 浏览 4 回答
207 浏览 5 回答
310 浏览 3 回答
87 浏览 4 回答
100 浏览 3 回答