微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
谈数学困难生的辩证施教摘要:目前中职生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。文章结合教学实践,提出了要转化数学学业不良现象必须做好的几个方面。关键词:学困生;改革模式;辩证施教;学法指导 初中后期被遗忘的一群孩子基本上都进入了中职学习,他们基础差,特别是数学这门学科基础更差。如何转化数学学业不良学生便成为我们教师普遍关注的紧迫课题。这些学生由于缺乏良好的学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢请教,怕被人认为“笨”。要想打破这个局面,必须做好以下几个方面: 一、树立所有学生都能教好的观念 现代教学观告诉我们,每个人均有独特的天赋和培养价值,关键在于要按照他们所表现出来的天赋,适应其特点进行教育。有材料表明,大多数学业不良学生的某些指标不仅在学生总体中具有中等水平,有的还具有较高水平,这为教师端正教学观,改革教育教学工作提供了实证性依据。数学学业不良学生的困难是暂时的,必须承认通过教育的改革,他们能够在原有的基础上得到适当发展。 (一)耐心疏导增强主动性 学习困难生在数学学习上既有困难又有潜能,因此教学的首要工作是转变观念,正确地对待学习困难的学生,认真分析学生学习困难的原因,有意识地“偏爱差生”,允许学生数学学习上的反复,从中来激发他们学习数学的自信心。中职生在过去的数学学习中受到鼓励的相当少,因此要积极创造条件让他们获得学习成功的体验,充分地鼓励肯定他们,促使他们对数学产生兴趣,使他们感到自己能学好数学。(二)成功教育树立自信心 数学学业不良是一个相对长期的过程。学生由于在以前的学习中屡遭失败,使他们心灵上受到严重的“创伤”,存在着一种失败者的心态,学习自信心差。教师只有充分相信学生发展的可能性,帮助学生不断成功,提高学生自尊自信的水平,逐步转变失败心态,才能形成积极的自我学习、自我教育的内部动力机制。如实施成功教育,创设成功教育情境,为学业不良学生创造成功的机会。事实上,每个学业不良学生都有自己的理想和抱负,只不过因各种原因冲淡而已。因此,教师必须引导学业不良学生在教师的“成功圈套”中获得能够实现愿望的心理自我暗示效应,从而产生自信心,进而感到经过努力,自己完全可以实现自己的抱负,达到转化数学学业不良学生的目的。(三)情感唤起学习热情 数学学业不良学生的转化涉及到生理学、心理学、教育管理、教学论等多个方面。教师不光是知识的传授者,还肩负着促进学生人格健康发展的重任。学业不良学生有多方面的需要,其中最迫切的是爱的需要、信任的需要,他们能从教师的一个眼神、一个手势、一个语态中了解到教师对他们的期望。因此,教师要偏爱他们,平时要利用一切机会主动地接近他们,与他们进行心理交流,和他们交朋友。哪怕是对他们的微微一笑,一句口头表扬,一个热情鼓励的目光,一次表现机会的给予,都可能为其提供热爱数学,进而刻苦钻研数学的契机,都会给学生一种无形的力量。二、实施“低、多、勤、快”的教学模式 帮助学生树立起学习数学的信心,为他们学好数学准备了条件,但单靠有信心,还是不够的。因此在学生树立起学习数学的自信心后,更重要的工作是创造条件使学习困难的学生真正地学习和掌握数学知识,让他们感到是自己学好了数学。要做到这一点就必须立足于课堂教学的改革,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,培养学生学习的能力。(一)低起点——引导学生积极参与 多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习,因此教学的起点必须低。教学中将教材原有的内容降低到学生的起点上,然后再进行正常的教学,教学中主要采用以下几种“低起点”引入法:1.直接使用教材中易于接轨的知识作为起点。如 “不等式的性质与证明”、“三角函数”等内容,按教材中引入法为起点。 2.以所授内容中最本质的东西作为教学的起点。如在“不等式的解法”教学中,将“区间分析法”作为掌握的重点,并以“区间分析法”为主线进行教学。首先从验证一元一次不等式开始,进而到一元二次不等式、高次不等式、分式不等式的解法。这就是抓住本质降低起点。 3.以已学内容的运算法则,基本方法为教学起点。由于数学知识的逐步复杂及深化,原先的数学概念其含意会变化发展,但运算法则不变。例如因式分解的概念随着数域的变化而变化;关于一元二次方程的根的概念,随着数的概念的扩充而发生变化;幂的运算法则,其定义开始在正整数范围内,随着负整数、分数指数和根式的引入,幂指数便扩大到任意实数,其运算法则照常适用。4.以基本原型作为教学的起点。数学概念一般不同于其他概念,对于通过抽象思维活动总结出来的概念,应尽可能通过直观教学。例如棱柱概念的掌握,先让学生观察实物,在具体直观认识的基础上,观察其主要特征,抽象概括出:“有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。这些面所围成的几何体叫做棱柱。”这就是在具体性基础上抽象出来的概念。把抽象的概念具体化,学生感到直观形象,记忆深刻,应用起来也比较方便。 5.以已学过的知识、例子作为起点,通过新旧知识的雷同点进行类比教学。如“解不等式”可以与“解方程”进行类比;“解二元二次方程组”可以与“解二元一次方程组”;“分式”可以通过“分数”;“相似形”可通过“全等形”进行类比引入教学。
(二)多归纳——总结规律 从学生实际情况出发,教师要多归纳、多总结,使知识系统化、条理化,达到易记好用。如求斜率的四种方法:(1)已知两点求斜率;(2)已知方向向量求斜率;(3)已知倾斜角求斜率;(4)已知直线的一般式求斜率。又如直线的点向式、点法式、点斜式,有一个共同特点,方程中都含有。再通过练习:已知直线经过点A(-3,1),B(1,4),分别用点向式、点法式,点斜式求直线方程。(三)勤练习——及时巩固 学习困难生在课堂教学中有意注意时间较短,因此需要将每节课分成若干个阶段,每个阶段都让自学、讲解、提问、练习、学生小结、教师归纳等形式交替出现,这样可以调节学生的注意力,使学生大量参与课堂学习活动。事实表明:课堂活动形式多了,学生思想开小差、做小动作、讲闲话等现象大大减少了。 (四)快反馈——及早纠错 学困生由于长期以来受各种消极因素的影响,数学知识往往需要多次反复才能掌握。这里的“多次反复”就是“多次反馈”。教师对于练习、作业、测验中的问题,应采用集体、个别面批相结合,或将问题渗透在以后的教学过程中等手段进行反馈、矫正和强化。同时还要根据反馈得到的信息,随时调整教学要求、教学进度和教学手段。由于及时反馈,避免了课后大面积补课,提高了课堂教学的效率。“快反馈”既可把学生取得的进步变成有形的事实,使之受到激励,乐于接受下一次学习,又可以通过信息的反馈传递进一步校正或强化。 三、辩证施教,掌握学习方法不是努力就能学好数学,但不努力肯定学不好数学。因此如何教以及如何学都得讲究方法。(一)弃重就轻、引发兴趣 中职生从小学到初中再到中职,在数学的学习中,经历过太多的磨难,曾经的挫折为他们的数学学习留下了恐惧的阴影,很多同学有畏惧心理,提到数学就害怕,见到数学就头痛,甚至厌学数学。这种情况下,教师首先要关心他们的生活和思想,以取得他们的信任。而后了解思想上、学习上存在的问题,消除其紧张心理。最后鼓励他们“敢问”、“会问”,激发其学习兴趣。让他们轻松愉快地投入到数学学习中来;还可以结合历届学生成功的事例和现实生活中的实例,帮助他们树立学好数学的信心。(二)开门造车、暴露思维中职生,尤其是高一新生作业问题很多,书写格式五花八门、条理混乱、交作业拖拖拖拉拉、有难题不合作、否则就是抄作业。他们互不交流、互不讨论、互不合作怎么能学好数学?因此教师要指导他们“开门造车”,暴露学习中的问题,有针对性地指导听课与作业,强化双基训练,对综合题要将问题转化为若干个基础问题,先做若干个基础题,然后做综合题。课堂练习经常开展说题活动,以暴露学生的解题思维过程,逐步提高解题能力。(三)笨鸟先飞、强化预习提高课堂学习过程中的数学能力,课前的预习非常重要。教学中,要有针对性地指导学生课前的预习,比如编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求学生强化课前预习,“笨鸟先飞”。 (四)固本培元、落实双基 中职生数学知识“先天不足”,要提高数学教学质量,必须重视初高中数学教学的整体性,固本培元,优化数学知识结构。数学能力差,主要表现在对基本知识、基本技能的理解、掌握和应用上。因此,教师要加强总结,使新旧知识系统化,形成知识树。基本技能训练要多周期反复进行,练习题难度易中低水平,训练的形式要多样化,使学生觉得新鲜有趣。通过训练使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。(五)改进方法、促使理解“上课能听懂,作业有困难”是中职学生共同的“心声”。他们不会自主学习,学习基本上是被动的;在解题方法上只停留于模仿,没有真正理解知识;在数学思考方法上,限于记忆模仿型、思维定式型。实际上模仿例题做习题是数学学习失败的第一大原因,其致命弱点是缺乏对解题方法的“理解”。从学困生的实际出发,我们设计出学生预习例题的步骤:(1)阅读例题;(2)边看边做例题;(3)默做例题,直至能够把例题规范做出来。当教师讲解例题时就能正确理解解题方法。因此,教学必须使学生向探究理解型的认识水平发展,否则不利于高中数学的教与学。 【参考文献】[1]张思明.勤学、乐学才能善学[J].中学数学教与学,2001,(2).
数学小论文 高一是数学学习的一个关键时期。我发现,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上。要学好高中数学,要求自己对高中数学知识有整体的认识和把握。 集合 进入高中,学习数学的第一课,就是集合。概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。集合中的元素具有“三性”:(1)确定性:集合中的元素应该是确定的,不能模棱两可。(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。(3)无序性:集合中的元素是无次序关系的。例:已知集合M={X|X�0�5+X-6=0}集合N={Y|aY+2,a∈R},且N∩CuM=Φ,则实数a=多少?解:因为N∩CuM=Φ所以N�6�7 M 因为M={X|X�0�5+X-6=0}={-3,2}所以N={2}或{-3}或{-3,2} 当N=Φ时,a=0 当N={2}时,2a+2=0,a=-1 当N={-3}时,-3a+2=0,a=2/3 所以实数a=0或a=-1或a=2/3注意:不能忘记Φ时的情况 不等式(1)绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;通过两边平方去绝对值;需要注意的是不等号两边为非负值。含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。(2)分式不等式的解法:通解变形为整式不等式;(3)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。(4)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小。例:解关于x的不等式x-a/x+1<0解:将题目整理变形(a-1)x/a<-1,分类讨论x的系数(1)当(a-1)/a>0,即a<0或a>1时,xa/(a-1).(3)当(a-1)/a=0,即a=1时,x取任意实数不等式恒成立. 函数1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质: 函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x), 这是我自己写的,如果好的话,你可以采纳,(*^__^*)...嘻嘻
304 浏览 3 回答
178 浏览 6 回答
130 浏览 2 回答
218 浏览 5 回答
147 浏览 5 回答
166 浏览 4 回答
256 浏览 3 回答
323 浏览 2 回答
355 浏览 3 回答
158 浏览 4 回答
255 浏览 5 回答
348 浏览 3 回答
158 浏览 4 回答
262 浏览 3 回答
94 浏览 5 回答