锅炉运行方面技术论文篇二 锅炉经济运行技术浅谈 【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 【关键词】锅炉,经济,燃煤 1、概述。锅炉是国民经济中重要的热能供应设备。电力、纺织、造纸、食品、机械、冶金、化工等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。锅炉是将燃料的化学能转变为热能的燃烧设备,它尽可能的提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并使其转化为热能,并利用热能加热锅内的水。 2、锅炉的分类。锅炉按照不同的方式分为以下几类:按锅炉的用途分为:生活锅炉、工业锅炉、电站锅炉和热水锅炉。按锅炉燃用的燃料分类可分为:燃煤炉、燃油炉和燃气炉。按燃烧方式分类可分为:层燃炉、室燃炉和介于二者之间的沸腾(流化床)炉。按有无汽包可分为:汽包锅炉和直流锅炉。按蒸汽压力分类可分为:低压锅炉、中压锅炉、次高压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉和超临界压力锅炉。按锅炉水循环方式分类可分为:自然循环锅炉、强制循环锅炉和复合循环锅炉。 3、锅炉的应用。利用锅炉产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。 4、锅炉的结构。锅炉是热能生成设备的主要构成,锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定热能的热水或过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。炉膛又称燃烧室,是供燃料燃烧的空间。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器中。 5.锅炉的工作原理。锅炉主要有以下系统来完成燃料的化学能到蒸汽具备足够的动能(以煤粉炉为例):汽水系统、风烟系统、燃料(煤粉和助燃油)系统、制粉系统、灰渣系统等。制粉系统用于磨制合格的煤粉储存于粉仓内,通过给粉机,由一次风送入炉膛进行燃烧。煤粉在炉膛内和高温烟气充分混合燃烧加热水冷壁内给水,同时产生大量的高温烟气,经各级低温、高温过热器通过辐射、半辐射半对流、对流充分换热冷却后的烟气由风烟系统中的引风机在经过电除尘、布袋除尘器等使烟气粉尘达标后由烟囱排向大气,炉内给水通过各级吸热后,形成高温高压蒸汽输送出去。煤粉燃烧产生的炉渣通过灰渣系统输送出去。 6.锅炉的维护保养。在锅炉的日常运行过程中,各系统辅机运转正常,要注意维持各项参数在许可范围之内,严格控制压力、温度等超标,定期排污维持合格汽水品质,延长设备使用寿命。锅炉停运后仍要进行保养,锅炉保养的方法都是通过尽量减少锅炉水中的溶解氧和外界空气漏入来减轻锅炉的腐蚀。最常见的保养方法一般有湿式保养法、充氮置换法、烘干防腐保养法等几种。 7.锅炉的经济运行。锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 由于炉膛内燃料的燃烧工况、温度水平、各级受热面的沽污与热交换状态以及辅助动力消耗的不同,其运行经济性也各不相同。必须进行精细的燃烧调整试验,以求得各种负荷下的最佳运行工况,作为日常运行调整的依据,以保证锅炉机组的经济运行状况良好。运行中应根据煤种变化掌握燃烧器特性、风量配比、一次风煤粉浓度及风量调整的规律,重视燃烧工况的科学调整,使炉内燃烧处于最佳状态。为了使燃料在炉膛内与氧气充分混合燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此除通过合理的风粉配比、调节火焰的充满度和合适的火焰燃烧中心外还应依据锅炉的性能试验,设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 煤粉炉通常采取以下措施来提高锅炉的经济性能: 合理配煤以保证燃煤质量。将各煤种精心混配,减少燃煤的大幅度变化,维持运行参数基本稳定。 合理调整煤粉细度。煤粉细度是影响飞灰可燃物含量的主要因素。经济煤粉细度要根据热力试验进行选取。 控制适量的过量空气系数。煤粉燃烧需要足够的氧气,但过多的冷空气会降低炉内温度水平,且使排烟容积增大。合理的过量空气系数应根据燃烧调整试验及煤种确定。 重视燃烧调整。炉内燃烧状况的好坏、温度水平及煤粉着火的难易程度直接影响灰渣可燃物的含量。 为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。 单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 8.排放锅炉烟气中所含粉尘(包括飞灰和未燃尽的煤粉)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护法规限定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助烟囱只能降低烟囱附近地区大气中污染物的浓度,不能彻底根除污染物。烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。为了达到较高的除尘效率,一般燃煤机组通常采用多级除尘,电除尘、布袋除尘等并通过脱硫脱销,使烟气的各项指标达到国标要求。 9.锅炉的发展。锅炉未来将向着进一步提高锅炉和电站热效率的方向发展;将进一步降低锅炉和电站的单位功率的设备成本;将极大的提高锅炉机组的运行灵活性和自动化水平;将会发展更多锅炉品种以适应不同的燃料;将会继续提高锅炉机组及其辅助设备的运行可靠性;将会下大力气采取措施减少对环境的污染。 参考文献: [1]张爱存.发电厂燃煤锅炉运行调整与经济性分析[D].华北电力大学 毕业 论文,2003.
The coked production took the steel industry an important constituent, is playing the more and more vital role in the national economy. In the market economy competition can more intense today, how enhance the coked product the quality and the output, reduces the energy consumption, and reduces the environmental pollution practically, is one item urgent and the vital duty. Coal blending compared to precision direct influence coke quality, then influence entire coking plant production and benefit, therefore the enhancement realization coal blending system automatic control, is one has the practical significance topic paper first to the automatic coal blending system application background, the trend of development has carried on the summary, take the coking plant automatic coal blending system as the object of study, has thoroughly analyzed influence coal blending quality many factors and the improvement measure, and has carried on the analysis to the automatic coal blending system function demand, has designed in this foundation based on the Fuyyz-PID compound control strategy automatic coal blending system overall structure and the hardware realization plan. The paper used Intellution Corporation the iFix configuration software to develop the automatic coal blending control system on position machine monitoring software, realized the flow control algorithm, the accumulation through the configuration software has summed and simulates, digital functions and so on quantity input output connection as well as man-machine connection picture. Paper research results already in Shandong yan ore international coking limited company coking plant investment production, moreover this factory has developed into the annual production to be possible until now to reach 3,500,000 ton coke production base. The scene movement result indicated, system movement stable reliable, control precision high, coal blending precision about 99%. This paper has the chart, the table, reference. Key word: Coking plant; Automatic coal blending; Fuzzy-PID compound control; Scene movement
煤制油我国总的能源特征是“富煤、少油、有气”。2003年我国总能源消费量达亿吨油当量,其中,煤炭占,石油占,天然气占,水电占,核能占。我国拥有较丰富的煤炭资源,2000~2003年探明储量均为1145亿吨,储采比由2000~2001年116年下降至2002年82年、2003年69年。而石油探明储量2003年为32亿吨,储采比为年。在较长一段时间内,我国原油产量只能保持在亿吨/年的水平。煤炭因其储量大和价格相对稳定,成为中国动力生产的首选燃料。在本世纪前50年内,煤炭在中国一次能源构成中仍将占主导地位。预计煤炭占一次能源比例将由1999年、2000年、2003年达到2005年50%左右。我国每年烧掉的重油约3000万吨,石油资源的短缺仍使煤代油重新提上议事日程,以煤制油己成为我国能源战略的一个重要趋势。煤炭间接液化技术由煤炭气化生产合成气、再经费-托合成生产合成油称之为煤炭间接液化技术。“煤炭间接液化”法早在南非实现工业化生产。南非也是个多煤缺油的国家,其煤炭储藏量高达亿吨,储采比为247年。煤炭占其一次能源比例为。南非1955年起就采用煤炭气化技术和费-托法合成技术,生产汽油、煤油、柴油、合成蜡、氨、乙烯、丙烯、α-烯烃等石油和化工产品。南非费-托合成技术现发展了现代化的Synthol浆液床反应器。萨索尔(Sasol)公司现有二套“煤炭间接液化”装置,年生产液体烃类产品700多万吨(萨索尔堡32万吨/年、塞库达675万吨/年),其中合成油品500万吨,每年耗煤4950万吨。累计的70亿美元投资早已收回。现年产值达40亿美元,年实现利润近12亿美元。我国中科院山西煤化所从20世纪80年代开始进行铁基、钴基两大类催化剂费-托合成油煤炭间接液化技术研究及工程开发,完成了2000吨/年规模的煤基合成油工业实验,5吨煤炭可合成1吨成品油。据项目规划,一个万吨级的“煤变油”装置可望在未来3年内崛起于我国煤炭大省山西。中科院还设想到2008年建成一个百万吨级的煤基合成油大型企业,山西大同、朔州地区几个大煤田之间将建成一个大的煤“炼油厂”。最近,总投资100亿美元的朔州连顺能源公司每年500万吨煤基合成油项目已进入实质性开发阶段,计划2005年建成投产。产品将包括辛烷值不低于90号且不含硫氮的合成汽油及合成柴油等近500种化工延伸产品。我国煤炭资源丰富,为保障国家能源安全,满足国家能源战略对间接液化技术的迫切需要,2001年国家科技部”863”计划和中国科学院联合启动了”煤制油”重大科技项目。两年后,承担这一项目的中科院山西煤化所已取得了一系列重要进展。与我们常见的柴油判若两物的源自煤炭的高品质柴油,清澈透明,几乎无味,柴油中硫、氮等污染物含量极低,十六烷值高达75以上,具有高动力、无污染特点。这种高品质柴油与汽油相比,百公里耗油减少30%,油品中硫含量小于0.5×10-6,比欧Ⅴ标准高10倍,比欧Ⅳ标准高20倍,属优异的环保型清洁燃料。山西煤化所进行”煤变油”的研究已有20年的历史,千吨级中试平台在2002年9月实现了第一次试运转,并合成出第一批粗油品,到2003年底已累计获得了数十吨合成粗油品。2003年底又从粗油品中生产出了无色透明的高品质柴油。目前,山西煤化所中试基地正准备第5次开车,计划运行6个月左右。目前世界上可以通过”煤制油”技术合成高品质柴油的只有南非等少数国家。山西煤化所优质清洁柴油的问世,标志着我国已具备了开发和提供先进成套产业化自主技术的能力,并成为世界上少数几个拥有可将煤变为高清洁柴油全套技术的国家之一。据介绍,该所2005年将在煤矿生产地建一个10万吨/年的示范厂,预计投资12亿~14亿元,在成熟技术保证的前提下,初步形成"煤制油"产业化的雏形。据预测,到2020年,我国油品短缺约在2亿吨左右,除亿吨需进口外,”煤制油”技术可解决6000万~8000万吨以上,投资额在5000亿元左右,年产值3000亿~4000亿元,其中间接液化合成油可生产2000万吨以上,投资约1600亿元,年产值1000亿元左右。从经济效益层面看,建设规模为50万吨/年的”煤制油”生产企业,以原油价不低于25美元的评价标准,内部收益率可达8%~12%,柴油产品的价格可控制在2000元/吨以内。而此规模的项目投资需45亿元左右。目前,包括山西煤化所在内的七家单位已组成联盟体,在进行”煤制油”实验对比中实行数据共享;不久将有吨高清洁柴油运往德国进行场地跑车试验;2005年由奔驰、大众等厂商提供车辆,以高清洁柴油作燃料,进行从上海到北京长距离的行车试验,将全面考察车与油料的匹配关系、燃动性及环保性等。目前”煤制油”工业化示范厂的基础设计工作正在进行之中,预计可在2010年之前投入规模生产。我国与南非于2004年9月28日签署合作谅解备忘录。根据这项备忘录,我国两家大型煤炭企业神华集团有限责任公司和宁夏煤业集团有限责任公司将分别在陕西和宁夏与南非索沃公司合作建设两座煤炭间接液化工厂。两个间接液化工厂的首期建设规模均为年产油品300万吨,总投资分别为300亿元左右。通过引进技术并与国外合资合作,煤炭间接液化项目能够填补国内空白,并对可靠地建设“煤制油”示范项目有重要意义。萨索尔公司是目前世界上唯一拥有煤炭液化工厂的企业。从1955年建成第一个煤炭间接液化工厂至今已有50年的历史,共建设了3个煤炭间接液化厂,年处理煤炭4600万吨,年产各种油品和化工产品760多万吨,解决了南非国内40%的油品需求。中科院与神华集团有关”铁基浆态床合成燃料技术”签约,标志着该技术的产业化指日可待。铁基浆态床合成燃料技术是中科院山西煤化所承担的”十五”中科院创新重大项目和国家”863”计划项目,得到了国家和山西省及有关企业的支持。经过两年多的努力,已经研发出高活性和高稳定性铁系催化剂、千吨级浆态床反应工艺和装置等具有自主知识产权的技术。截至2004年10月已完成了1500小时的中试运转,正在为10万吨/年工业示范装置的基础设计收集数据,已基本形成具有我国自主知识产权的集成性创新成果。与神华集团的合作,将促进对我国煤基间接合成油技术的发展起到积极的作用。壳牌(中国)有限公司、神华集团和宁夏煤业集团于2004年11月签署谅解备忘录,共同开发洁净的煤制油产品。根据谅解备忘录,在为期6到9个月的预可行性研究阶段,三方将就壳牌煤制油(间接液化)技术在中国应用的可行性进行研究,内容包括市场分析、经济指标评估、技术解决方案和相关规定审核以及项目地点的确定。据了解,神华集团和宁夏煤业集团将分别在陕西和宁夏各建设一座煤炭间接液化工厂。计划中的两个间接液化工厂的首期建设规模均为年产油品300万吨,初步估计总投资各为300亿元左右。云南开远解化集团有限公司将利用小龙潭褐煤资源的优势,建设年产30万吨甲醇及10万吨二甲醚项目、年产50万吨或100万吨煤制合成油项目,以及利用褐煤间接液化技术生产汽油。该公司计划于2006年建成甲醇及二甲醚项目,产品主要用于甲醇燃料和二甲醚民用液化气。煤制合成油项目因投资大、技术含量高,解化集团计划分两步实施:2005年建成一套年产1万吨煤制油工业化示范装置;2008年建成年产50万吨或100万吨煤制合成油装置。目前,年产2万吨煤制油工业化示范项目已完成概念性试验和项目可行性研究报告。该项目将投资7952万元,建成后将为企业大型煤合成油和云南省煤制油产业起到示范作用。由煤炭气化制取化学品的新工艺正在美国开发之中,空气产品液相转化公司(空气产品和化学品公司与依士曼化学公司的合伙公司)成功完成了由美国能源部资助亿美元、为期11年的攻关项目,验证了从煤制取甲醇的先进方法,该装置可使煤炭无排放污染的转化成化工产品,生产氢气和其他化学品,同时用于发电。1997年4月起,该液相甲醇工艺(称为LP MEOH)开始在伊士曼公司金斯波特地区由煤生产化学品的联合装置投入工业规模试运,装置开工率为,验证表明,最大的产品生产能力可超过300吨/天甲醇,比原设计高出10%。它与常规甲醇反应器不同,常规反应器采用固定床粒状催化剂,在气相下操作,而LP MEOH工艺使用浆液鼓泡塔式反应器(SBCR),由空气产品和化学品公司设计。当合成气进入SBCR,它藉催化剂(粉末状催化剂分散在惰性矿物油中)反应生成甲醇,离开反应器的甲醇蒸气冷凝和蒸馏,然后用作生产宽范围产品的原料。LP MEOH工艺处理来自煤炭气化器的合成气,从合成气回收25%~50%热量,无需在上游去除CO2(常规技术需去除CO2)。生成的甲醇浓度大于97%,当使用高含CO2原料时,含水也仅为1%。相对比较,常规气相工艺所需原料中CO和H2应为化学当量比,通常生成甲醇产品含水为4%~20%。当新技术与气化联合循环发电装置相组合,又因无需化学计量比例进料,可节约费用美元/加仑。由煤炭生产的甲醇产品可直接用于汽车、燃气轮机和柴油发电机作燃料,燃料经济性无损失或损失极少。如果甲醇用作磷酸燃料电池的氢源,则需净化处理。煤炭直接液化技术早在20世纪30年代,第一代煤炭直接液化技术—直接加氢煤液化工艺在德国实现工业化。但当时的煤液化反应条件较为苛刻,反应温度470℃,反应压力70MPa。1973年的世界石油危机,使煤直接液化工艺的研究开发重新得到重视。相继开发了多种第二代煤直接液化工艺,如美国的氢-煤法(H-Coal)、溶剂精炼煤法(SRC-Ⅰ、SRC-Ⅱ)、供氢溶剂法(EDS)等,这些工艺已完成大型中试,技术上具备建厂条件,只是由于经济上建设投资大,煤液化油生产成本高,而尚未工业化。现在几大工业国正在继续研究开发第三代煤直接液化工艺,具有反应条件缓和、油收率高和油价相对较低的特点。目前世界上典型的几种煤直接液化工艺有:德国IGOR公司和美国碳氢化合物研究(HTI)公司的两段催化液化工艺等。我国煤炭科学研究总院北京煤化所自1980年重新开展煤直接液化技术研究,现已建成煤直接液化、油品改质加工实验室。通过对我国上百个煤种进行的煤直接液化试验,筛选出15种适合于液化的煤,液化油收率达50%以上,并对4个煤种进行了煤直接液化的工艺条件研究,开发了煤直接液化催化剂。煤炭科学院与德国RUR和DMT公司也签订了云南先锋煤液化厂可行性研究项目协议,并完成了云南煤液化厂可行性研究报告。拟建的云南先锋煤液化厂年处理(液化)褐煤257万吨,气化制氢(含发电17万KW)用原煤253万吨,合计用原煤510万吨。液化厂建成后,可年产汽油万吨、柴油万吨、液化石油气万吨、合成氨万吨、硫磺万吨、苯万吨。我国首家大型神华煤直接液化油项目可行性研究,进入实地评估阶段。推荐的三个厂址为内蒙古自治区鄂尔多斯市境内的上湾、马家塔、松定霍洛。该神华煤液化项目是2001年3月经国务院批准的可行性研究项目,这一项目是国家对能源结构调整的重要战略措施,是将中国丰富的煤炭能源转变为较紧缺的石油资源的一条新途径。该项目引进美国碳氢技术公司煤液化核心技术,将储量丰富的神华优质煤炭按照国内的常规工艺直接转化为合格的汽油、柴油和石脑油。该项目可消化原煤1500万吨,形成新的产业链,效益比直接卖原煤可提高20倍。其副属品将延伸至硫磺、尿素、聚乙烯、石蜡、煤气等下游产品。这项工程的一大特点是装置规模大型化,包括煤液化、天然气制氢、煤制氢、空分等都是世界上同类装置中最大的。预计年销售额将达到60亿元,税后净利润亿元,11年可收回投资。甘肃煤田地质研究所煤炭转化中心自主研发的配煤液化试验技术取得重大突破。由于配煤液化技术油产率高于单煤液化,据测算,采用该技术制得汽柴油的成本约1500元/吨,经济效益和社会效益显著。此前的煤液化只使用一种煤进行加工,甘肃煤炭转化中心在世界上首次采用配煤的方式,将甘肃大有和天祝两地微量成分有差别的煤炭以6:4配比,设定温度为440℃、时间为60秒进行反应,故称为“配煤液化”。试验证明,该技术可使煤转化率达到,使油产率提高至,所使用的普通催化剂用量比单煤液化少,反应条件相对缓和。甘肃省中部地区高硫煤配煤直接液化技术,已由甘肃煤田地质研究所完成实验室研究,并通过专家鉴定,达到了国际先进水平。同时,腾达西北铁合金公司与甘肃煤田地质研究所也签署投资协议,使”煤制油”产业化迈出了实质性一步。为给甘肃省”煤制油”产品升级换代提供资源保障,该省同甘肃煤田地质研究所就该省中部地区高硫煤进行”煤制油”产业化前期研究开发。经专家测定,产油率一般可达到%,如配煤产油率可达%。该项目付诸实施后,将为甘肃省华亭、靖远、窑街等矿区煤炭转化和产业链的延伸积累宝贵的经验。神华集团”煤制油”直接液化工业化装置巳正式于2004年8月底在内蒙古自治区鄂尔多斯市开工。这种把煤直接液化的”煤制油”工业化装置在世界范围内是首次建造。神华煤直接液化项目总建设规模为年产油品500万吨,分二期建设,其中一期工程建设规模为年产油品320万吨,由三条主生产线组成,包括煤液化、煤制氢、溶剂加氢、加氢改质、催化剂制备等14套主要生产装置。一期工程主厂区占地面积186公顷,厂外工程占地177公顷,总投资245亿元,建成投产后,每年用煤量970万吨,可生产各种油品320万吨,其中汽油50万吨,柴油215万吨,液化气31万吨,苯、混合二甲苯等24万吨。为了有效地规避和降低风险,工程采取分步实施的方案,先建设一条生产线,装置运转平稳后,再建设其它生产线。2007年7月建成第一条生产线,2010年左右建成后两条生产线。神华集团有限责任公司2003年煤炭产销量超过1亿吨,成为我国最大的煤炭生产经营企业。据称,如果石油价格高于每桶22美元,煤液化技术将具有竞争力。神华集团将努力发展成为一个以煤炭为基础,以煤、电、油(化)为主要产品的大型能源企业集团。到2010年,神华集团煤炭生产将超过2亿吨;自营和控股发电装机容量将达到2000万千瓦;煤炭液化形成油品及煤化工产品能力达1000万吨/年;甲醇制烯烃的生产能力达到1亿吨/年。2020年,其煤炭生产将超过3亿吨;电厂装机容量达到4000万千瓦;煤炭液化形成油品和煤化工产品能力达3000万吨/年。目前,煤炭直接液化世界上尚无工业化生产装置,神华液化项目建成后,将是世界上第一套煤直接液化的商业化示范装置。煤炭间接液化也仅南非一家企业拥有工业化生产装置。美国正在建设规模为每天生产5000桶油品的煤炭间接液化示范工厂。云南省也将大力发展煤化工产业,并积极实施煤液化项目。云南先锋煤炭直接液化项目预可行性研究报告已于2004年5月通过专家评估。项目实施后,”云南造”汽油、柴油除供应云南本省外,还可打入省外和国际市场,同时也将使云南成为继内蒙古后的第二大”煤变油”省份。云南省先锋煤炭液化项目是我国利用国外基本成熟的煤炭直接液化技术建设的首批项目之一。云南煤炭变油技术将首先在先锋矿区启动,获得成功经验后在其他地方继续推广。即将兴建的云南煤液化厂估算总投资103亿元,项目建设期预计4年,建成后年销售额34亿元,年经营成本亿元,年利润亿元。云南省煤炭资源较为丰富,但是石油、天然气严重缺乏。先锋褐煤是最适合直接液化的煤种。在中国煤科总院试验的全国14种适宜直接液化的煤种中,先锋褐煤的活性最好,惰性组分最低,转化率最高。液化是一个有效利用云南大量褐煤资源的突破口,洁净煤技术是发展的方向,符合国家的产业政策。”煤变油”将使云南省煤炭资源优势一跃成为经济优势。一旦”煤变油”工程能在全省推广,全省150亿吨煤就能转化为30亿吨汽油或柴油,产值将超过10万亿元。
巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。
火电厂输煤系统的任务是卸煤、堆煤、上煤和配煤,以达到按时保质、保量为机组(原煤仓)提供燃煤的目的。整个输煤系统是火电厂十分重要的支持系统。它是保证机组稳发满发的重要条件。输煤系统是火电厂的重要组成部分,其安全可靠运行是保证电厂实现安全、高效不可缺少的环节。输煤系统的工艺流程随锅炉容量、燃料品种、运输方式的不同而差别较大,并且使用设备多,分布范围广。作为一种具有本安性且远距离传输能力强的分布式智能总线网络,lonworks总线能将监测点做到彻底的分散(在一个网络内可带32000多个节点),提高了系统的可靠性,可以满足输煤系统监控的要求。火电厂输煤系统一般都采用顺序控制和报警方式,为相对独立的控制单元系统,系统配备了各种性能可靠的测量变送器。通过运用Lonworks现场总线技术将各种测量变送器的输出信号接入对应的智能节点组成多个检测单元,然后挂接在Lonworks总线上,再通过Lonworks总线与已有的DCS系统集成,实现了对输煤系统更加有效便捷的监控。在输煤系统中,常用的测量变送器一般有以下几种: (1)开关量皮带速度变送器(2)皮带跑偏开关(3)煤流开关(4)皮带张力开关(5)煤量信号(6)金属探测器(7)皮带划破探测(8)落煤管堵煤开关(9)煤仓煤位开关。每一种测量变送器和其相对应节点共同组成智能监测单元,对需要监测的工况参数进行实时的监控。监测单元通过收发器接入Lonworks总线网络进行通信,可根据监测到的参数进行控制和发出报警信号,系统的结构如图1所示。3、 Lonworks总线智能节点的一般设计智能节点是总线网络中分布在现场级的基本单元,其设计开发分为两种:一种是基于neuron芯片的设计,即节点中不再包含其它处理器,所有工作均由neuron芯片完成。另一种是基于主机的节点设计,即neuron芯片只完成通信的工作,用户应用程序由其它处理器完成。前者适合设计相对简单的场合,后者适应于设计相对复杂的场合。一般情况下,多采用基于芯片的设计。由于智能节点不外乎输入/输出模拟量和输入/输出开关量四种形式,节点的设计也大同小异,对此本文只给出了节点设计的一般方法。基于芯片的智能节点的硬件结构包括控制电路、通信电路和其它附加电路组成,其基本结构如图2所示。图2 智能节点基本结构图Fig 2 Basic Structure Of Node Based On The Neuron Chip控制电路①神经元芯片:采用Toshiba公司生产的3150芯片,主要用于提供对节点的控制,实施与Lon网的通信,支持对现场信息的输入输出等应用服务。②片外存储器:采用Atmel公司生产的AT29C256(Flash存储器)。AT29C256共有32KB的地址空间,其中低16KB空间用来存放神经元芯片的固件(包括LonTalk协议等)。高16KB空间作为节点应用程序的存储区。采用ISSI公司生产的IS61C256作为神经元芯片的外部RAM。③I/O接口:是neuron芯片上可编程的11个I/O引脚,可直接与外部接口电路连接,其功能和应用由编程方式决定。通信电路通信电路的核心收发器是智能节点与Lon网之间的接口。目前,Echelon公司和其他开发商均提供了用于多种通信介质的收发器模块。通常采用Echelon公司生产的适用于双绞线传输介质的FTT-10A收发器模块。附加电路附加电路主要包括晶振电路、复位电路和Service电路等。①晶振电路:为3150神经元芯片提供工作时钟。②复位电路:用于在智能节点上电时产生复位操作。另外,节点还将一个低压中断设备与3150的Reset引脚相连,构成对神经元芯片的低压保护设计,提高节点的可靠性稳定性。③Service电路:专为下载应用程序设计。Service指示灯对诊断神经元芯片固件状态有指示作用节点的软件设计采用Neuron C编程语言设计。Neuron C是为neuron芯片设计的编程语言,可直接支持neuron芯片的固化,并定义了34种I/O对象类型。节点开发的软件设计分为以下几步:(1)定义I/O对象:定义何种I/O对象与硬件设计有关。在定义I/O对象时,还可设置I/O对象的工作参数及对I/O对象进行初始化。(2)定义定时器对象:在一个应用程序中最多可以定义15个定时器对象(包括秒定时器和毫秒定时器),主要用于周期性执行某种操作情况,或引进必要的延时情况。(3)定义网络变量和显示报警:既可以采用网络变量又可以采用显示报警形式传输信息,一般情况采用网络变量形式。(4)定义任务:任务是neuron C实现事件驱动的途径,是对事件的反应,即当某事件发生时,应用程序应执行何种操作。(5)定义用户自定义的其它函数 :可以在neuron C程序中编写自定义的函数,以完成一些经常性功能,也将一些常用的函数放到头文件中,以供程序调用。4、基于Lonworks总线的火电厂输煤系统与DCS的网络集成现场总线技术与传统的系统DCS系统实现网络集成并协同工作的情况目前在火电厂中尚为数不多。进一步推动火电厂数字化和信息化的发展,逐步推行现场总线技术与DCS系统的集成是火电厂工业控制及自动化水平发展的趋势。就目前来讲,现场总线技术与DCS集成方式有多种,且组态灵活。根据现场的实际情况,我们知道不少大型火电厂都已装有DCS系统并稳定运行,而现场总线很少或首次引入系统,因此可采用将现场总线层与DCS系统I/O层连接的集成,该方案结构简便易行,其原理如图3所示。从图中可以看出现场总线层通过一个接口卡挂在DCS的I/O层上,将现场总线系统中的数据信息映射成与DCS的I/O总线上的数据信息,使得在DCS控制器所看到的从现场总线开来的信息如同来自一个传统的DCS设备卡一样。这样便实现了在I/O总线上的现场总线技术集成。火电厂输煤系统无论是在规模上,还是在利用已有生产资源的基础上,采用该方案都是可行的,同时也体现了把火电厂某些相对独立控制系统通过现场总线技术纳入DCS系统的合理性。由此可见,现阶段现场总线与系统的并存不仅会给生产用户带来大量收益,而且使用户拥有更多的选择,以实现更合理的监测与控制。参考文献:大跨度输煤栈桥结构设计探讨火电厂输煤控制系统的开发发电厂输煤计量集控的理论与实践参考资料:
104 浏览 5 回答
144 浏览 7 回答
105 浏览 4 回答
124 浏览 3 回答
98 浏览 3 回答
166 浏览 4 回答
204 浏览 5 回答
304 浏览 2 回答
236 浏览 6 回答
265 浏览 3 回答
122 浏览 5 回答
232 浏览 2 回答
250 浏览 3 回答
225 浏览 3 回答
338 浏览 3 回答