证法1先做图,做出过b,c的两条中线,分别交ac于m,交ab于n,所以m,n是ac,ab的中点.连接mn设向量bp=λ向量pm,向量cp=μ向量pn(λ,μ为不等于0的实数)向量bc=向量pc-向量pb=向量bp-向量cp=λ向量pm-μ向量pn,向量nm=向量pm-向量pn,而向量bc=2向量nm所以,λ向量pm-μ向量pn=2向量pm-2向量pn即(λ-2)向量pm-(μ-2)向量pn=o向量因为向量pm与向量pn不共线,所以λ=2,μ=2所以向量bp=2向量pm由此证得两中线交点把bm分成2:1.同理可证另一条中线与bm的交点也有此性质,故三角形的三条中线交于一点,并平分每条比为1:2得证.证法2作出一个三角形abc,设d,e,f分别是bc,ca,ab的中点,在平面上任取一点o,设向量oa=a,向量ob=b,向量oc=c则向量od=1/2(b+c),向量of=1/2(a+b),向量oe=1/2(c+a).再设p为ad上的三等分点,满足向量ap=2向量pd,则向量op=1/3向量oa+2/3od=1/2a+2/3*1/2(a+b)=1/3(a+b+c)同理可证,p也是be,cf的三等分点,因此三条中线交于点p。三角形的3中线交于一点,并平分每条比为1:2 --------------------°.●丫è。为您解答!满意的话请采纳,谢谢o(∩_∩)o...希望带上好评哦~~ ★x5~谢谢~!!