目 录摘 要 IABSTRACT(英文摘要) II目 录 IV第一章引 言 课题的提出 超声波测距发展概况 本课题研究内容及科学意义 3第二章超声波测距技术综述 超声及超声传感器简介 超声概述 超声传感器结构 超声传感器的主要参数及选择 超声测距原理与方法 测量盲区的影响 本章小结 13第三章硬件系统设计 方案论证 凌阳61板简介 功能区分与工作原理 系统各模块工作原理 超声波测距模组简介 超声波谐振频率发生电路、调理电路 超声波回波接受处理电路 超声波模组电源设置 LED键盘模组简介 硬件系统设计说明 系统设计 硬件原理图 系统连接 本章小结 26第四章软件系统设计 主程序设计 超声波测距程序设计 本章小结 31第五章试验结果与改进 系统调试 试验结果分析 试验结果 误差分析 系统改进方法 本章小结 38结论 39参考文献 41致谢 44附录一 45附录二 46
Introduction vibrations of frequencies greater than the upper limit of the audible range for humans—that is, greater than about 20 kilohertz. The term sonic is applied to ultrasound waves of very high amplitudes. Hypersound, sometimes called praetersound or microsound, is sound waves of frequencies greater than 1013 hertz. At such high frequencies it is very difficult for a sound wave to propagate efficiently; indeed, above a frequency of about × 1013 hertz, it is impossible for longitudinal waves to propagate at all, even in a liquid or a solid, because the molecules of the material in which the waves are traveling cannot pass the vibration along rapidly enough. TableMany animals have the ability to hear sounds in the human ultrasonic frequency range. Some ranges of hearing for mammals and insects are compared with those of humans in the Table. A presumed sensitivity of roaches and rodents to frequencies in the 40 kilohertz region has led to the manufacture of “pest controllers” that emit loud sounds in that frequency range to drive the pests away, but they do not appear to work as advertised. Transducers An ultrasonic transducer is a device used to convert some other type of energy into an ultrasonic vibration. There are several basic types, classified by the energy source and by the medium into which the waves are being generated. Mechanical devices include gas-driven, or pneumatic, transducers such as whistles as well as liquid-driven transducers such as hydrodynamic oscillators and vibrating blades. These devices, limited to low ultrasonic frequencies, have a number of industrial applications, including drying, ultrasonic cleaning, and injection of fuel oil into burners. Electromechanical transducers are far more versatile and include piezoelectric and magnetostrictive devices. A magnetostrictive transducer makes use of a type of magnetic material in which an applied oscillating magnetic field squeezes the atoms of the material together, creating a periodic change in the length of the material and thus producing a high-frequency mechanical vibration. Magnetostrictive transducers are used primarily in the lower frequency ranges and are common in ultrasonic cleaners and ultrasonic machining applications. By far the most popular and versatile type of ultrasonic transducer is the piezoelectric crystal, which converts an oscillating electric field applied to the crystal into a mechanical vibration. Piezoelectric crystals include quartz, Rochelle salt, and certain types of ceramic. Piezoelectric transducers are readily employed over the entire frequency range and at all output levels. Particular shapes can be chosen for particular applications. For example, a disc shape provides a plane ultrasonic wave, while curving the radiating surface in a slightly concave or bowl shape creates an ultrasonic wave that will focus at a specific point. Piezoelectric and magnetostrictive transducers also are employed as ultrasonic receivers, picking up an ultrasonic vibration and converting it into an electrical oscillation. Applications in research One of the important areas of scientific study in which ultrasonics has had an enormous impact is cavitation. When water is boiled, bubbles form at the bottom of the container, rise in the water, and then collapse, leading to the sound of the boiling water. The boiling process and the resulting sounds have intrigued people since they were first observed, and they were the object of considerable research and calculation by the British physicists Osborne Reynolds and Lord Rayleigh, who applied the term cavitation to the process of formation of bubbles. Because an ultrasonic wave can be used carefully to control cavitation, ultrasound has been a useful tool in the investigation of the process. The study of cavitation has also provided important information on intermolecular forces. Research is being carried out on aspects of the cavitation process and its applications. A contemporary subject of research involves emission of light as the cavity produced by a high-intensity ultrasonic wave collapses. This effect, called sonoluminescence, is believed to create instantaneous temperatures hotter than the surface of the Sun. The speed of propagation of an ultrasonic wave is strongly dependent on the viscosity of the medium. This property can be a useful tool in investigating the viscosity of materials. Because the various parts of a living cell are distinguished by differing viscosities, acoustical microscopy can make use of this property of cells to “see” into living cells, as will be discussed below in Medical applications. Ranging and navigating Sonar (sound navigation and ranging) has extensive marine applications. By sending out pulses of sound or ultrasound and measuring the time required for the pulses to reflect off a distant object and return to the source, the location of that object can be ascertained and its motion tracked. This technique is used extensively to locate and track submarines at sea and to locate explosive mines below the surface of the water. Two boats at known locations can also use triangulation to locate and track a third boat or submarine. The distance over which these techniques can be used is limited by temperature gradients in the water, which bend the beam away from the surface and create shadow regions. One of the advantages of ultrasonic waves over sound waves in underwater applications is that, because of their higher frequencies (or shorter wavelengths), the former will travel greater distances with less diffraction. Ranging has also been used to map the bottom of the ocean, providing depth charts that are commonly used in navigation, particularly near coasts and in shallow waterways. Even small boats are now equipped with sonic ranging devices that determine and display the depth of the water so that the navigator can keep the boat from beaching on submerged sandbars or other shallow points. Modern fishing boats use ultrasonic ranging devices to locate schools of fish, substantially increasing their efficiency. Even in the absence of visible light, bats can guide their flight and even locate flying insects (which they consume in flight) through the use of sonic ranging. Ultrasonic echolocation has also been used in traffic control applications and in counting and sorting items on an assembly line. Ultrasonic ranging provides the basis of the eye and vision systems for robots, and it has a number of important medical applications (see below). The Doppler effect If an ultrasonic wave is reflected off a moving obstacle, the frequency of the resulting wave will be changed, or Doppler-shifted. More specifically, if the obstacle is moving toward the source, the frequency of the reflected wave will be increased; and if the obstacle is moving away from the source, the frequency of the reflected wave will be decreased. The amount of the frequency shift can be used to determine the velocity of the moving obstacle. Just as the Doppler shift for radar, an electromagnetic wave, can be used to determine the speed of a moving car, so can the speed of a moving submarine be determined by the Doppler shift of a sonar beam. An important industrial application is the ultrasonic flow meter, in which reflecting ultrasound off a flowing liquid leads to a Doppler shift that is calibrated to provide the flow rate of the liquid. This technique also has been applied to blood flow in arteries. Many burglar alarms, both for home use and for use in commercial buildings, employ the ultrasonic Doppler shift principle. Such alarms cannot be used where pets or moving curtains might activate them. Materials testing Nondestructive testing involves the use of ultrasonic echolocation to gather information on the integrity of mechanical structures. Since changes in the material present an impedance mismatch from which an ultrasonic wave is reflected, ultrasonic testing can be used to identify faults, holes, cracks, or corrosion in materials, to inspect welds, to determine the quality of poured concrete, and to monitor metal fatigue. Owing to the mechanism by which sound waves propagate in metals, ultrasound can be used to probe more deeply than any other form of radiation. Ultrasonic procedures are used to perform in-service inspection of structures in nuclear reactors. Structural flaws in materials can also be studied by subjecting the materials to stress and looking for acoustic emissions as the materials are stressed. Acoustic emission, the general name for this type of nondestructive study, has developed as a distinct field of acoustics. High-intensity applications High-intensity ultrasound has achieved a variety of important applications. Perhaps the most ubiquitous is ultrasonic cleaning, in which ultrasonic vibrations are set up in small liquid tanks in which objects are placed for cleaning. Cavitation of the liquid by the ultrasound, as well as the vibration, create turbulence in the liquid and result in the cleaning action. Ultrasonic cleaning is very popular for jewelry and has also been used with such items as dentures, surgical instruments, and small machinery. Degreasing is often enhanced by ultrasonic cleaning. Large-scale ultrasonic cleaners have also been developed for use in assembly lines. Ultrasonic machining employs the high-intensity vibrations of a transducer to move a machine tool. If necessary, a slurry containing carborundum grit may be used; diamond tools can also be used. A variation of this technique is ultrasonic drilling, which makes use of pneumatic vibrations at ultrasonic frequencies in place of the standard rotary drill bit. Holes of virtually any shape can be drilled in hard or brittle materials such as glass, germanium, or ceramic. Ultrasonic soldering has become important, especially for soldering unusual or difficult materials and for very clean applications. The ultrasonic vibrations perform the function of cleaning the surface, even removing the oxide layer on aluminum so that the material can be soldered. Because the surfaces can be made extremely clean and free from the normal thin oxide layer, soldering flux becomes unnecessary. Chemical and electrical uses The chemical effects of ultrasound arise from an electrical discharge that accompanies the cavitation process. This forms a basis for ultrasound's acting as a catalyst in certain chemical reactions, including oxidation, reduction, hydrolysis, polymerization and depolymerization, and molecular rearrangement. With ultrasound, some chemical processes can be carried out more rapidly, at lower temperatures, or more efficiently. The ultrasonic delay line is a thin layer of piezoelectric material used to produce a short, precise delay in an electrical signal. The electrical signal creates a mechanical vibration in the piezoelectric crystal that passes through the crystal and is converted back to an electrical signal. A very precise time delay can be achieved by constructing a crystal with the proper thickness. These devices are employed in fast electronic timing circuits. Medical applications Although ultrasound competes with other forms of medical imaging, such as X-ray techniques and magnetic resonance imaging, it has certain desirable features—for example, Doppler motion study—that the other techniques cannot provide. In addition, among the various modern techniques for the imaging of internal organs, ultrasonic devices are by far the least expensive. Ultrasound is also used for treating joint pains and for treating certain types of tumours for which it is desirable to produce localized heating. A very effective use of ultrasound deriving from its nature as a mechanical vibration is the elimination of kidney and bladder stones. Diagnosis Much medical diagnostic imaging is carried out with X rays. Because of the high photon energies of the X ray, this type of radiation is highly ionizing—that is, X rays are readily capable of destroying molecular bonds in the body tissue through which they pass. This destruction can lead to changes in the function of the tissue involved or, in extreme cases, its annihilation. One of the important advantages of ultrasound is that it is a mechanical vibration and is therefore a nonionizing form of energy. Thus, it is usable in many sensitive circumstances where X rays might be damaging. Also, the resolution of X rays is limited owing to their great penetrating ability and the slight differences between soft tissues. Ultrasound, on the other hand, gives good contrast between various types of soft tissue. Ultrasonic scanning in medical diagnosis uses the same principle as sonar. Pulses of high-frequency ultrasound, generally above one megahertz, are created by a piezoelectric transducer and directed into the body. As the ultrasound traverses various internal organs, it encounters changes in acoustic impedance, which cause reflections. The amount and time delay of the various reflections can be analyzed to obtain information regarding the internal organs. In the B-scan mode, a linear array of transducers is used to scan a plane in the body, and the resultant data is displayed on a television screen as a two-dimensional plot. The A-scan technique uses a single transducer to scan along a line in the body, and the echoes are plotted as a function of time. This technique is used for measuring the distances or sizes of internal organs. The M-scan mode is used to record the motion of internal organs, as in the study of heart dysfunction. Greater resolution is obtained in ultrasonic imaging by using higher frequencies—., shorter wavelengths. A limitation of this property of waves is that higher frequencies tend to be much more strongly absorbed. Because it is nonionizing, ultrasound has become one of the staples of obstetric diagnosis. During the process of drawing amniotic fluid in testing for birth defects, ultrasonic imaging is used to guide the needle and thus avoid damage to the fetus or surrounding tissue. Ultrasonic imaging of the fetus can be used to determine the date of conception, to identify multiple births, and to diagnose abnormalities in the development of the fetus. Ultrasonic Doppler techniques have become very important in diagnosing problems in blood flow. In one technique, a three-megahertz ultrasonic beam is reflected off typical oncoming arterial blood with a Doppler shift of a few kilohertz—a frequency difference that can be heard directly by a physician. Using this technique, it is possible to monitor the heartbeat of a fetus long before a stethoscope can pick up the sound. Arterial diseases such as arteriosclerosis can also be diagnosed, and the healing of arteries can be monitored following surgery. A combination of B-scan imaging and Doppler imaging, known as duplex scanning, can identify arteries and immediately measure their blood flow; this has been extensively used to diagnose heart valve defects. Using ultrasound with frequencies up to 2,000 megahertz, which has a wavelength of micrometre in soft tissues (as compared with a wavelength of about micrometre for light), ultrasonic microscopes have been developed that rival light microscopes in their resolution. The distinct advantage of ultrasonic microscopes lies in their ability to distinguish various parts of a cell by their viscosity. Also, because they require no artificial contrast mediums, which kill the cells, acoustic microscopy can study actual living cells. Therapy and surgery Because ultrasound is a mechanical vibration and can be well focused at high frequencies, it can be used to create internal heating of localized tissue without harmful effects on nearby tissue. This technique can be employed to relieve pains in joints, particularly in the back and shoulder. Also, research is now being carried out in the treatment of certain types of cancer by local heating, since focusing intense ultrasonic waves can heat the area of a tumour while not significantly affecting surrounding tissue. Trackless surgery—that is, surgery that does not require an incision or track from the skin to the affected area—has been developed for several conditions. Focused ultrasound has been used for the treatment of Parkinson's disease by creating brain lesions in areas that are inaccessible to traditional surgery. A common application of this technique is the destruction of kidney stones with shock waves formed by bursts of focused ultrasound. In some cases, a device called an ultrasonic lithotripter focuses the ultrasound with the help of X-ray guidance, but a more common technique for destruction of kidney stones, known as endoscopic ultrasonic disintegration, uses a small metal rod inserted through the skin to deliver ultrasound in the 22- to 30-kilohertz frequency region. Infrasonics The term infrasonics refers to waves of a frequency below the range of human hearing—., below about 20 hertz. Such waves occur in nature in earthquakes, waterfalls, ocean waves, volcanoes, and a variety of atmospheric phenomena such as wind, thunder, and weather patterns. Calculating the motion of these waves and predicting the weather using these calculations, among other information, is one of the great challenges for modern high-speed computers. TableAircraft, automobiles, or other rapidly moving objects, as well as air handlers and blowers in buildings, also produce substantial amounts of infrasonic radiation. Studies have shown that many people experience adverse reactions to large intensities of infrasonic frequencies, developing headaches, nausea, blurred vision, and dizziness. On the other hand, a number of animals are sensitive to infrasonic frequencies, as indicated in the Table. It is believed by many zoologists that this sensitivity in animals such as elephants may be helpful in providing them with early warning of earthquakes and weather disturbances. It has been suggested that the sensitivity of birds to infrasound aids their navigation and even affects their migration. One of the most important examples of infrasonic waves in nature is in earthquakes. Three principal types of earthquake wave exist: the S-wave, a transverse body wave; the P-wave, a longitudinal body wave; and the L-wave, which propagates along the boundary of stratified mediums. L-waves, which are of great importance in earthquake engineering, propagate in a similar way to water waves, at low velocities that are dependent on frequency. S-waves are transverse body waves and thus can only be propagated within solid bodies such as rocks. P-waves are longitudinal waves similar to sound waves; they propagate at the speed of sound and have large ranges. When P-waves propagating from the epicentre of an earthquake reach the surface of the Earth, they are converted into L-waves, which may then damage surface structures. The great range of P-waves makes them useful in identifying earthquakes from observation points a great distance from the epicentre. In many cases, the most severe shock from an earthquake is preceded by smaller shocks, which provide advance warning of the greater shock to come. Underground nuclear explosions also produce P-waves, allowing them to be monitored from any point in the world if they are of sufficient intensity. The reflection of man-made seismic shocks has helped to identify possible locations of oil and natural-gas sources. Distinctive rock formations in which these minerals are likely to be found can be identified by sonic ranging, primarily at infrasonic frequencies.
超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!
关于超声波无损检测技术的应用研究
摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。
关键词:超声波无损检测;脉冲反射式技术;检测技术
中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02
超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。
1 超声波无损检测技术的发展趋势和主要功能
超声波无损检测技术的发展趋势
在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。
超声波无损检测技术系统的主要功能
目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。
系统主要功能的技术指标
脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。
2 超声波无损检测技术检测的方法和缺陷的显示
超声波无损检测技术检测的主要应用方法
超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。
缺陷的显示
在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。
缺陷的定位
对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。
3 结语
科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。
参考文献
[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.
[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.
[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.
[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325
[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.
作者简介:李新明(1992―),男,湖北人,大连理工大学学生。
长输管道超声波内检测技术现状
【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。
【关键词】长输管道 超声波 内检测 优势 现状
一、前言
长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。
二、管道内检测主要技术及优势
管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。
超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。
管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。
三、长输管道建设工艺技术发展现状
1、管道焊接
管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。
(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。
(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,
(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。
2、非开挖穿越施工技术
遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。
3、定向穿越技术
我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。
四、管道超声内检测技术现状
1、相控阵超声波检测器
美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。
该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。
2、弹性波管道检测器
安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。
五、结束语
综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。
参考文献
[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.
[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48
[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.
[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.
[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78
91 浏览 4 回答
167 浏览 3 回答
204 浏览 2 回答
305 浏览 4 回答
292 浏览 3 回答
344 浏览 2 回答
344 浏览 2 回答
203 浏览 7 回答
186 浏览 4 回答
132 浏览 3 回答
289 浏览 2 回答
90 浏览 3 回答
311 浏览 3 回答
110 浏览 3 回答
248 浏览 2 回答