随着水文地质科学的发展,地下水水流和溶质运移的理论也在不断发展。目前有关多相流理论的研究受到了水文地质学界的极大关注,许多学者认为这一领域的研究是水文地质学在21世纪的热点之一。
目前,对于地下环境中的水、溶质在单相的流体状态下的作用和运移问题的研究比较成熟,但实际上,水和溶质在地下的运移是一个非常复杂的体系,包括气—液—固的多相体系,有时还要考虑能量的变化和影响等问题。如不论应用何种模型进行地下水资源评价,含水层补给量的计算都非常重要,这就首先要考虑水在包气带的运移和作用,而水在包气带的运移就是一个水-气的多相流问题。在研究地下水中的污染质运移问题时,还要考虑污染物与介质的反应,即考虑固相问题。因此,多相流运移理论的研究对于地下水资源评价、地下水污染的模拟预报都具有重要的意义。
一、多相流理论研究的现状
目前国际上水文地质界对地下的多相流系统研究比较重视,特别是在溶质迁移方面,如对NAPL(Nonaqueous Phase Liquid,非水相液体)污染质的研究已成为水文地质学者研究的热点和前沿(,1996)。NAPL属于有机污染,与水非混溶,可来自石油、石油化工、农药、洗涤剂等等,范围非常广泛。NAPL在地下环境中的运移是一个非常复杂的问题,实际上它是一个气-水-NAPL-固多相体系。目前,国际上NAPL在包气带和含水层中运移的模拟模型较多,但大部分的模型所考虑的问题单一,仅就某一方面建立模型进行模拟。如Jacob Bear(1996)对潜水面上LNAPL(L表示light,轻非水相液体)透镜体运移的研究,利用垂向上水、LNAPL和气三相平衡分布的假设,建立了NAPL漂浮在潜水面上的物质平衡方程,并进行了模拟;Paul 和Michael (1996)建立了“空隙规模”的网络模型,对毛细压力、饱和度和相界面积间的关系进行了计算;Chiu-On Ng和Chiang (1996)建立了模型模拟了包气带中VOC(挥发性有机物)的运移问题;Rainer Helmig(1996)建立了非均质孔隙介质中DNAPL(D表示dense,重非水相液体)运移的模拟模型,等等。
美国能源部太平洋西北实验室最近成功开发了“多相流地下运移”大型模拟模型软件,可用来解决复杂的、非线性、多相流、非饱和的水流、物质和能量等运移问题,它几乎涉及了绝大部分的污染质运移问题(,1995)。“多相流地下运移”模型具有九个亚模型,分别为:水模型、水-气模型、水-气-能量模型、水-油模型、水-气-油模型、水-气-油-能量模型、水-盐模型、水-气-盐模型和水-气-能量-盐模型。每个亚模型都可独立使用,模型间也可共用一些模块。根据不同的具体问题,模型可以模拟一维、二维和三维流情形。
(一)水亚模型
主要考虑水和岩石介质的作用,可模拟饱和、非饱和情况下的地下水流问题和污染质运移问题。模型中物理参数可以是常数也可以随水相压力改变而变化,模拟层的饱和度(S)、渗透率(k)是由不同的S-k-p(p为压力)关系得到的。这种关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型的计算结果包括:水相压力、饱和度、水相达西速度、溶质浓度和溶质通量。
(二)水-气亚模型
考虑水相、气相和岩石介质,模拟饱和、非饱和地下水流问题和溶质运移问题,并有气相参与。模型假设溶解的气相物质在气-液相间的转换符合亨利定律,被模拟的污染物质可以在液相和气相中运移。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型计算结果包括:水相和气相压力、饱和度、水相和气相达西速度、溶质浓度和溶质通量。
(三)水-气-能量亚模型
模型同时求解水、气和能量守恒三个方程,与水-气亚模型的区别是增加了温度变量,在模型中考虑了热量的传输和转换。由于温度的变化,水相饱和度的变化范围增大。模型计算结果包括:水相和气相压力、温度、饱和度、水相和气相达西速度、热通量、溶质浓度和溶质通量。该模型还可以模拟冰冻过程,包括孔隙中水的冰冻过程,模拟中还考虑溶质浓度对冰冻的影响。
(四)水-油亚模型
考虑水、NAPL和岩石介质,模拟水、NAPL和其他溶质的饱和、非饱和运移问题。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。污染质可以在水和NAPL中运移。模型计算结果包括:水相和NAPL压力、饱和度、水相和NAPL达西速度、溶质浓度和溶质通量。
(五)水-气-油亚模型
模型同时求解水、气和VOC质量守恒3个方程,可模拟水相、气相、NAPL和岩石系统的流动和溶质运移问题。模型考虑了 VOC和溶解的气体在不同相之间的转换,并假设这种相之间的转换达到平衡。被模拟的污染物质可以在液相、气相和NAPL中运移。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型计算结果包括:水相、气相和NAPL压力、饱和度、水相、气相和NAPL达西速度、溶质浓度和溶质通量。
(六)水-气-油-能量亚模型
模型同时求解水、气、VOC和能量守恒方程,在水-气-油模型的基础上增加了温度变量。模型可模拟水-气-岩石系统中不同流体饱和程度下水和溶质的运移以及热能的转换。模型计算结果包括:水相、气相和NAPL压力、温度、饱和度、水相、气相和NAPL达西速度、热通量、溶质浓度和溶质通量。
(七)水-盐亚模型
模型同时求解水、盐质量守恒两个方程,可模拟饱和、非饱和情况下水流和溶质运移问题。这一模型的特点是:被模拟水流的物理特性随水中盐浓度的变化而变化,这与一般的溶质运移模型的假设不同。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。被模拟的污染物质(不是盐分)可以在液相中运移。模型计算结果包括:水相压力、饱和度、水相达西速度、盐浓度、盐通量、溶质浓度和溶质通量。
(八)水-气-盐亚模型
模型同时求解水和气质量守恒两个方程,在水-盐亚模型的基础上增加了气相的参与。盐分在水相中运移,并考虑其与介质的作用。盐分质量守恒方程与流动方程同时求解。模型假设溶解的气相物质在气-液相间的转换符合亨利定律。被模拟的污染物质(不是盐分)可以在液相和气相中运移,并与介质具有不同的作用。模型计算结果包括:水相、气相压力、饱和度、水相、气相达西速度、盐浓度、盐通量、溶质浓度和溶质通量。
(九)水-气-能量-盐亚模型
模型同时求解水、气和能量守恒3个方程,与水-气-盐模型的区别是增加了温度变量。在模型中考虑了热量的传输和转换。模型计算结果包括:水相、气相压力、温度、饱和度、水相、气相达西速度、热通量、盐浓度、盐通量、溶质浓度和溶质通量。该模型还可以模拟冰冻过程,包括孔隙中水的冰冻过程,模拟中还考虑溶质浓度对冰冻的影响。
这9个亚模型组成了“多相流地下运移”模型,它几乎涉及了饱和、非饱和、多相流等地下溶质运移和作用的全部过程,这一模型对边界条件的处理也具有很大的灵活性和实用性。对于水、气和VOC质量守恒方程,采用8种边界条件,分别为:Dirichlet、Neumann、零通量、初始条件、饱和、单位梯度、水力梯度和自由梯度;对于能量和溶质守恒方程,采用Dirichlet、零通量、初始条件、流出和流入5种边界条件。总之,这一模型具有很强的模拟功能和实用性。
二、存在的问题和未来发展趋势
首先,在目前多相流的研究中,多使用达西定律来描述气体的运动。虽然达西定律是地下水在含水层中运移的重要定律,但能否直接应用于描述地下气体的流动,以及如何确定相关参数仍是问题。此外,有关气相运移的模型在实际操作中仍有很大的不确定性,如初始、边界条件的确定,热力学反应参数的确定等。
此外,在非饱和带中,采用不同的S-k-p关系来描述其特性时,有的模型甚至有五六种关系可供选择,包括了滞后作用、包裹现象等等。但如何根据实际问题真实地反应包气带中气、NAPL和水之间的相互作用并给予描述,目前仍然是一个困难。
在多相流模拟模型研究中,实验室机理模拟尤为重要。如以前一直认为DNAPL一般只出现在含水层的底部,但经过室内模拟实验,发现DNAPL可以在包气带或含水层中渗透性能相对弱的层位或呈透镜体存在。此外,包气带中S-k-p的关系对于污染质运移的模拟至关重要,它的确定也需要大量的实验室工作。
以上多相流研究中存在的问题也正是未来研究的方向和发展趋势。许多学者实际上已经开始了上述领域的研究。