叫“斐波那契数列”,主要用于现代物理、准晶体结构、化学等领域。
相关介绍:
斐波那契数列又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34
美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
扩展资料
斐波那契数列这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割(或者说后一项与前一项的比值小数部分越来越逼近)。
斐波那契数列从第二项开始,每个偶数项的平方都比前后两项之积少1,每个奇数项的平方都比前后两项之积多1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
参考资料来源:百度百科-斐波那契数列