随机现象:
概率论与数理统计的研究的对象就是随机现象,随机现象就是在一定的条件下不总是出现相同的结果的现象,也就是不能肯定的确定结果的现象就统称为随机现象。现实生活中有很多的随机现象比如同一学校统一专业的学生考上研究生的现象就是随机现象,你不能说哪一个学生肯定能够考上某所学校但是你能根据这所学校往年的数据估算出这所学校的考研率,在一定程度上也就能够大致估算出这所学校某某同学考上研究生的可能性有多大,当然一个学生能不能考上研究生与这所学校的考研率并没有必然的联系因为是随机的具有不确定性,但有一定的相关程度在里面。整个概率论研究的就是随机现象的模型(概率分布),而概率分布则是能够用来描叙某随机现象特征的工具。有阴就有阳,有了随机事件自然与之对应的就是确定性现象(如太阳每天东升西落)
样本空间:
随机现象一切可能 基本结果 所构成的集合则称为样本空间,其集合内的元素又称为样本点,当样本点的个数为可列个或者有限个的时候就叫做离散型样本空间,当样本点的个数为无限个或者不可列个的时候就叫做连续型样本空间。( 可列个的意思是可以按照一定的次序一一列举出来,比如某一天内到达某一个商场内的人数都是整数1,2,3。。。。,这叫可列个,不可列个的意思比如电视机的寿命,有小时的有小时的有小时的,你永远不能按照次序列举出比一百小的下一个元素到底是哪一个,这就叫不可列)。
随机事件:
随机现象某些样本点组成的集合叫做用一个 随机事件 ,也就是说随机事件是样本空间的一个子集,而样本空间中单个元素所组成的集合就叫做 基本事件 ,样本空间自身也是一个事件叫做 必然事件 ,样本空间的最小子集也即空集就叫做 不可能事件
随机变量:
用来表示随机现象结果的变量称为 随机变量 ,随机变量的取值就表示随机事件的结果,实际上随机事件的结果往往与一个随机变量的取值可以一一对应
随机事件之间的运算与关系:
由于我们将随机事件定义成一个集合事件间的运算也可看作是集合间的运算,集合间的诸运算如交集、并集、补集、差集等运算随机事件之间也有,而且运算规则一致。集合间的包含、相等、互不相容、对立,事件之间也有,随机事件间的运算性质满足交换律、结合律、分配率、德摩根定律。
事件域:
事件域为样本空间的某些子集所组成的集合类而且满足三个条件,事件域中元素的个数就是样本空间子集的个数,比如一个有N个样本点的样本空间那么他的事件域就有 个元素,定义事件域主要是为了定义事件概率做准备。
概率论中最基本的一个问题就是如何去确定一个随机事件的概率,随机事件的结果虽然具有不确定性,但是他发生的结果具有一定的规律性(也即随机事件发生可能性的大小),而用来描叙这种规律性的工具就是概率,但是我们怎么样来给概率下一个定义嘞?如何度量描叙事件发生可能性的大小嘞?这是一个问题。
在概率论的发展史上针对不同的随机事件有过各种各样的概率定义,但是那些定只适用于某一类的随机事件,那么如何给出适合一切随机现象概率的最一般的定义嘞?1900年数学家希尔伯特提出要建立概率的公理化定义,也就是建立一个放之四海而皆准的满足一切随机事件的概率的定义,用概率本质性的东西去刻画概率.1933年前苏联数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这个定义既概括了历史上几种概率的定义中的共同特性,又避免了各自的含混不清之处,不管什么随机现象只有满足该定义中的三条公理,才能说明他是概率,该定义发表之后得到了几乎所有数学家的一致认可。(说点题外话,如果某位数学工作者提出了某个重大的发现,首先需要写论文获得学术圈内的人士一致认同他的这个发现才能够有可能被作为公理写进教科书,之所以被称作公理就因为它既是放之四海而皆准的准则也是公认的真理)。
概率的三条公理化定义:
每一个随机事件其背后必定伴随着有她的样本空间(就像有些成功的男人背后都有一位贤内助),每一个随机事件都属于样本空间的事件域,样本空间的选取不同对同一个随机事件而言其概率通常也会不同。
如果概率满足以上三条公理则称有样本空间、事件域、概率所组成的空间为概率空间,满足以上三条公理的概率才能称之为概率。
概率的公理化定义并没有给出计算概率的方法因此知道了什么是概率之后如何去确定概率就又成了一个问题。
确定概率的频率方法:
确定概率的频率方法应用场景是在能够大量重复的随机实验中进行,用频率的稳定值去获得概率的估算值的方法思想如下:
为什么会想到用频率去估算概率嘞?因为人们的长期实践表明随着试验次数的增加,频率会稳定在某一个常数附近,我们称这个常数为频率的稳定值,后来的伯努力的大数定律证明了其稳定值就是随机事件发生的概率,可以证明频率一样满足概率的三条公理化定义由此可见频率就是“伪概率”。
确定概率的古典方法:
古典问题是历史上最早的研究概率论的问题,包括帕斯卡研究的骰子问题就是古典问题,他简单直观不需要做大量的试验我们就可以在经验事实的基础上感性且理性的分析清楚。
古典方法确定概率的思想如下:
很显然上叙古典概率满足概率的三条公理化定义,古典概型是最古老的确定概率的常用方法,求古典概率归结为求样本空间样本点的总数和事件样本点的个数,所以在计算中常用到排列组合的工具。
确定概率的几何方法:
基本思想:
确定概率的主观方法:
在现实世界中一些随机现象是无法进行随机试验的或者进行随机试验的成本大到得不偿失的地步,这时候的概率如何确定嘞?
统计学界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性的个人信念,这样给出的概率就叫做主观概率,比如我说我考上研究生的概率是百分之百(这当然有吹牛的成分在里面,但是里面有也包含了自信和自己对自己学习情况的了解以及自己对所报考院校的了解),比如说某企业家说根据它多年的经验和当时的一些市场信息认为某项新产品在市场上畅销的可能性是百分之80(这种话如果是熟人在私下里跟你说你还可以相信但是也要小心,如果是陌生人当着很多人的面说的你会相信吗?傻X才相信对不对?这么畅销你自己为什么不去做还把蛋糕分给老子?)。主观概率就是人们根据实际情况对某件事情发生的可能性作出的估计,但是这种估计的好坏是有待验证的。
这个理解了都不用特意去记要用的时候信手捏来,我是个很勤快的人其他公式都懒得记懒得写了。。。。下面只分析条件概率、全概率公式、贝叶斯公式:
条件概率:
所谓条件概率就是在事件A发生的情况下B发生的概率,即A B为样本空间 中两两事件若P(B)>0则称:
为在B发生的前提下A发生的条件概率,简称条件概率。
这个公式不难理解,实际上上面公式 也就是说“ 在B发生的条件下A发生的概率等于事件A与事件B共有的样本点的个数比上B的样本点的个数”,而且可以验证此条件概率满足概率的三条公理化定义。
乘法公式:
全概率公式:
设 为样本空间 的一个分割,即 互不相容,且 ,如果 则对任一事件A有:
这个公式也是很好理解的因为诸 互不相容而且其和事件为样本空间,故A事件中的样本点的个数等于A与诸 中共有样本点的和。
贝叶斯公式:
贝叶斯公式是在全概率公式和乘法公式的基础上推得的。
设若 为样本空间的一个分割,即 互不相容,且 如果 则:
公式的证明是根据条件概率来的,然后在把分子分母分别用乘法公式和全概率公式代替即可,公式中的 一般为已知概率称之为 先验概率 公式中 则称之为 后验概率 ,全概率公式和乘法公式为由原因推结果,而贝叶斯公式则为由结果推原因。
事件独立性:
上面我们介绍了条件概率这个概念,在条件A下条件B发生的概率为 ,如果B的发生不受A的影响嘞?直觉上来讲这就将意味着
故引入如下定义对任意两个事件A,B若 则称事件A与事件B相互独立
除了两个随机事件相互独立满足的定义当然也会有多个随机事件独立满足的定义,对N随机事件相互独立则要求对事件中的任意 个随机事件都相互独立.
伯努利概型:
定义:如果实验E只有两种可能的结果: ,然后把这个试验重复n次就构成了n重伯努利试验或称之为伯努利概型.显然每次伯努利试验事件结果之间是相互独立互不影响的,则伯努利试验显然是服从二项分布的,之后再介绍二项分布。
离散型随机变量:
之前说过用来表示随机现象结果的变量称之为随机变量,如抛掷一枚骰子随机变量的取值可以为1,2,3….显然此时随便试验的结果与随机变量的取值是一一对应的,于是我们将研究随机试验结果的统计规律转化为研究随机变量取值的统计规律,这种对应关系是人为的建立起来的同时也是合理的,只取有限个或者可列个值时候的随机变量则称之为离散型随机变量。
随机变量的分布列:
将随机变量的取值与其对应取值的可能性大小即概率列成一张表就称之为分布列,分布列使得随机变量的统计规律一目了然也方便计算其特征数方差和均值。分布列满足如下两个性质:
满足以上两个性质的列表则称之为分布列
分布函数:
设若X为一个随机变量,对任意的实数x,称 为随机变量X的分布函数记为 .
分布函数满足以下三个性质:
以上上个性质是一个函数能否成为分布函数的充要条件。
数学期望和方差:
先来看一个例子,某手表厂在出产的产品中抽查了N=100只手表的日走时误差其数据如下:
这时候这100只手表的平均日走时误差为: 其中 是日走时误差的频率记做 则
平均值 即平均值为频数乘以频率的和,由于在 时频率稳定于概率,于是在理论上来讲频率应该用概率来代替,这时我们把频率用概率来代替之后求出的平均值称之为数学期望(实际上由后面的大数定律可得平均值也稳定于数学期望),数学期望在一定程度上反映了随机变量X结果的平均程度即整体的大小,我们记为 。
定义:设X是一个随机变量X的均值 存在 如果 也存在则称之为随机变量X的方差记为 .
显然方差也是一个均值那么他是什么的均值嘞? 表示随机变量的均值离差, 由随机变量平均值的离差和等于零我们可以推的随机变量均值的离差和也等于零故均值离差和的均值 也等于零,但是我们希望用离差来刻画不同分布间的差别如果用均值离差和的均值那么任何分布都为零,于是我们将离差加上一个平方变成 这样避免了离差和为零。那么方差这个表示分布特征的数又有什么重要意义嘞?很多人看似学完了概率统计,但是居然连方差的意义都没有搞清楚,实际上方差是用来刻画数据间的差异的,而刻画数据间的差异无论是在空间上的向量还是在平面上的点,用距离来刻画他们之间的差异是再好不过的。在物理学上要想正确合理的比较两动体的速度加速度我们就需要选取合适的参考系来进行对比,同样在比较数据间的差异的时候我们也往往用均值来做他们的参考(实际上其他的值也可以用来进行比较,但是那可能造成方差过大的现象),与均值的距离越大说明他们的差异也越大,而距离又有正负之分因此为了区别正负我们也需要把与均值的距离加上一个平方,这也就是方差概念的来源。我们通常用方差来描叙一组数据间的差异,方差越小数据越集中,越大数据越分散,同时在金融上面也用来评估风险比如股价的波动性,我们当然希望股价的波动越是平稳即方差越小、收益越稳定越好。
因为均值和方差描叙了随机变量及其分布的某些特征因此就将其称之为特征数.
连续型随机变量的密度函数:
连续型随机变量的取值可能充满某一个区间为不可列个取值,因此描叙连续型随机变量的概率分布不能再用分布列的行时呈现出来,而要借助其他的工具即概率密度函数。
概率密度函数的由来:比如某工厂测量一加工元件的长度,我们把测量的元件按照长度堆放起来,横轴为元件的单位长度,纵轴为元件单位长度上的频数,当原件数量很多的时候就会形成一定的图形,为了使得这个图形稳定下来我们将纵坐标修改为单位长度上的频率,当元件数量不断增多的时候由于频率会逐步稳定于概率,当单位长度越小,原件数量越多的时候,这个图形就越稳定,当单位长度趋向于零的时候,图形就呈现出一条光滑的曲线这时候纵坐标就由“单位长度上的概率”变为“一点上的概率密度”,此时形成的光滑曲线的函数 就叫做概率密度函数,他表现出x在一些地方取值的可能性较大,一些地方取值的可能性较小的一种统计规律,概率密度函数的形状多种多样,这正是反映了不同的连续随机变量取值统计规律上的差别。
概率密度函数 虽然不是密度但是将其乘上一个小的微元 就可得小区间 上概率的近似值,即
微分元的累计就能够得到区间 上的概率,这个累计不是别的就是 在区间 上的积分 = .
由此可得x的分布函数 ,对于连续型随机变量其密度函数的积分为分布函数,分布函数求导即为密度函数
密度函数的基本性质:
连续型随机变量的期望和方差:
设若随机变量X的密度函数为 .
数学期望:
方差:
切比雪夫不等式(Chebyshev,1821-1894):
设随机变量X的数学期望和方差都存在,则对任意常数 有:
.
之所以有这个公式是因为人们觉得事件{ }发生的概率应该与方差存在一定的联系,这个是可以理解的,方差越大在某种程度上说明 X的取值偏离 越厉害即说明偏离值大于某个常数a的取值越多因此取值大于某个值的概率也越大,上面公式说明大偏差发生概率的上界与方差有关,方差越大上界也越大。
常用离散型分布:
常用的连续型分布:
高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.关键词:概率论;教学;思维方法在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A. Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“ 必然寓于偶然转自之中” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) > 0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) > 0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) > 0 , P(B) > 0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:定义1:设A,B 是两个随机事件,若P(A) > 0 ,P(B) > 0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) > 0 与P(B) > 0 是否为本质要求?事实上,如果P(A) > 0,P(B) > 0,我们可以得到:P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) > 0,P(B) > 0,即如下定义事件的独立性:定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.[参 考 文 献][1] C·R·劳.统计与真理[M].北京:科学出版社,2004.[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.建立数学创造性意识的学习氛围论文论文关键词:创造性思维;培养;协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……剖析高中平面向量授课方式研究论文【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……培养学生数学时刻使用意识研究论文[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……
概率论与数理统计是工程数学中比较灵活的一门课程,个人觉得也是学的有滋有味的一科。概率论是以古典型概率,几何型概率,条件概率,各种分布列等为基本模型,以加法原理,乘法原理为规则,以非负性,规范性,可列可加性为基本性质,逆事件,差事件概率的计算公式,加法公式等为运算基础骨架。解题时应做到心中有数,将难题一步步分解为这些简单问题的叠加。学习重点应放在理解和运用上,而不在于计算,老师上课时的例题很重要,课后要理解消化,勤做练习加深理解,做题时应分清各类题型,举一反三。熟练掌握:概率部分: 1.常见分布列,分布函数:离散型--连续型 一维--二维--多维离散: 两点分布,二次分布,泊松分布,几何分布连续: 均匀分布,指数分布,正态分布2.基本运算概念: 概率密度,数学期望,方差,协方差,相关系数 数理统计部分:样本基本概念:X2分布,t分布,F分布,正态总体的样本均值,方差,k阶原点矩,k阶中心矩推荐经典习题:第一章:第二章:第三章:第四章:(*).(*).第六章:(*)第七章:
130 浏览 4 回答
232 浏览 3 回答
90 浏览 3 回答
224 浏览 3 回答
125 浏览 3 回答
206 浏览 2 回答
300 浏览 3 回答
221 浏览 2 回答
188 浏览 3 回答
129 浏览 3 回答
346 浏览 2 回答
161 浏览 3 回答
294 浏览 3 回答
277 浏览 8 回答
271 浏览 2 回答