矩阵正定性的性质:
1、正定矩阵的特征值都是正数。
2、正定矩阵的主元也都是正数。
3、正定矩阵的所有子行列式都是正数。
4、正定矩阵将方阵特征值,主元,行列式融为一体。
正定矩阵的特征方法:
1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。
2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU
4、对称矩阵A正定,则A的主对角线元素均为正数。
5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
扩展资料:
一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z。
对于n阶实对称矩阵A,下列条件是等价的:
(1)A是正定矩阵;
(2)A的一切顺序主子式均为正;
(3)A的一切主子式均为正;
(4)A的特征值均为正;
(5)存在实可逆矩阵C,使A=C′C;
(6)存在秩为n的m×n实矩阵B,使A=B′B;
(7)存在主对角线元素全为正的实三角矩阵R,使A=R′R。
对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。
参考资料来源:百度百科--正定矩阵