大数据技术在网络营销中的策略研究论文
从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。
摘要:
当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。
关键词:
大数据;网络营销;应用策略;营销效果;
一、前言
现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。
二、基于大数据的网络营销概述
网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。
应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。
三、传统网络营销存在的一些问题
(一)传统网络营销计划主要由策划人主观决定,科学性不足
信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。
(二)传统网络营销的互动性不足,无法进行准确的产品营销
传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。
(三)无法有效分析客户需求,导致客户服务质量差
当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。
四、将基于大数据的网络营销如何促进传统的网络营销
(一)使网络营销决策更科学,更明智
在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。
(二)大大提高了网络营销的准确性
如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。
(三)显着提高对客户网络营销服务水平
通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。
五、基于大数据的网络营销优势
(一)提高网络营销广告的准确性
在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。
(二)提高网络营销市场的定位精度
在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:
1、分析客户数据并确定产品在市场上的定位:
首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。
2、通过市场调查对产品市场定位进行验证:
在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。
3、建立客户反馈机制:
客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。
(三)增强网络营销服务的个性化
为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。
六、基于大数据网络营销策略
使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。
(一)客户档案策略
客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。
(二)满足需求策略
为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。
(三)客户服务策略
随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。
(四)多平台组合策略
在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。
七、结语
总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。
参考文献
[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.
[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.
[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.
[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.
[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.
[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.
[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.
[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.
[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.
[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.
[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.
[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.
[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.
下面我为你准备的关于市场营销的论文,欢迎阅读借鉴,希望对大家有帮助。
一、数据分析时代演变历程
(一)数据时代
数据分析出现在新的计算技术实现以后,分析时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据时代
时代开始于2005年,与分析要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据时代
又称为富化数据的产品时代。分析时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
二、大数据营销的本质
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
三、基于数据营销案例研究――京东
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的JD Phone的计划。
JD Phone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
四、大数据营销的策略分析
(一)数据分析要树立以人为本的思维
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造
大数据时代电力营销管理创新研究论文
摘要: 对电力企业来说,大数据营销能基于海量数据的分析,为其制定营销战略提供依据,而如何在大数据基础上进行电力营销管理创新是亟待解决的大问题。本文首先阐述了目前基于大数据电力营销管理的弊端;其次分析了基于大数据的电力营销管理面临的机遇和挑战;最后提出了基于大数据的电力营销管理创新,以促进电力企业稳定、长久发展。
关键词: 大数据;电力营销管理;创新
在当前的大数据环境下,电力系统既面临新的发展机遇,也面临着新的挑战。对电力系统来说,大数据不仅是科技生产力进步的具体体现,也是新形势下电力系统发展、管理及技术改革的重要依据,电力系统的大数据包括生产、运营和管理三方面。电力营销是电力系统的重要部分,对提高企业的核心竞争力及确保企业的可持续发展具有十分重要的作用。然而由于各种因素的影响,电力营销管理目前存在诸多弊端,在大数据时代,对电力营销创新管理模式进行研究迫在眉睫,基于此,笔者对基于大数据的电力营销管理创新进行研究。
1.基于大数据的电力营销管理的弊端
在大数据背景下,国内电力企业营销管理存在诸多弊端,具体表现在下述几方面:
第一,电力营销管理理念亟待改进。电力行业长久以来属于国家的垄断行业,而随着各种新型能源的不断出现,电能面临着巨大的竞争,然而其营销设计仍以业务导向为核心,很少考虑市场的竞争状况和客户的需求,没有建立一种以客户为核心的营销管理机制;
第二,电力营销业务功能亟待完善。电力系统的营销政策、技术研究、运维及市场开拓等方面的机构不完善,不健全,部分功能缺失;
第三,电力营销运营效率亟待提升。电能计量检定、人员及相关设备重复配置;规划、生产的部门对电力营销管理支持力度较弱;故障抢修、业扩报装等服务流程不协同。综上所述,电力营销管理亟待进行创新,以适应新形势下客户对供电服务的要求。
2.基于大数据的电力营销管理面临的机遇和挑战
机遇
在大数据快速发展的背景下,电力系统营销管理面临的机遇主要表现为:
第一,国内经济稳定发展,电力需求仍持续增加;
第二,国家实施节能减排,电能应用范围更加广泛;
第三,国家电网创建“双一流”,为加快营销发展注入新动力。
挑战
在大数据快速发展的背景下,电力系统营销管理也面临诸多挑战,具体表现为:
第一,国家经济转型期的'结构优化调整及节能减排战略的实施,国家控制能源消费总量,大工业用电比重会呈现一定程度的下降。循环经济、节能环保产业、分布式电源等会日益增加,对电力营销市场的发展带来威胁,影响电能的市场占有率;
第二,国家大力开发低碳技术,清洁能源要求必须建立一种新型的供用电模式,而现有的供电模式要满足这些应用需要法律、政策、技术等众多方面的支持才能实现;
第三,国家电网推进“三集五大”要求电力系统必须要转变营销发展方式。目前电力系统的营销仍然资源分散、管理层级多,亟待进行整合;营销管理的专业化、组织结构扁平化、管理层级等方面亟待改进,集约化、智能化的服务手段亟待提升等,使得目前电力系统的营销管理面临巨大挑战。
3.基于大数据的电力营销管理创新研究
在大数据及信息化背景下,电力企业要提高核心竞争力,必须要顺应时代潮流,及时对传统的营销管理体系进行重构,通过利用大数据分析研究结果进行电力营销,具有极大的市场价值。
通过大数据分析客户的潜在需求行为
大数据最主要的特征之一是海量的数据,电力企业要获取比较精准的数据,必须进行大量数据的分析研究寻找客户的潜在需求。所以对电力企业来说要重建营销管理体系,提高核心竞争力必须要制定多种方案,通过大数据的分析结果寻找潜在的客户需求,站在用户的角度,分析用户的电能消费行为和特点,通过这些分析及时改变自己的营销管理模式,提升服务质量,提高客户满意度和忠诚度,最终提高电力企业的知名度。
通过大数据分析精准定位消费客户,进行个性化营销
从大数据提供的海量信息中分析客户的消费行为,找出电力系统最精准的用户,以便电力企业的营销能实现精准化,同时根据精准化消费群体的特征建立针对性的营销方式,从而能划分出精准的消费客户,进行个性化营销。随着经济的发展和用户需求的提升,电力企业也逐渐重视电力营销的精准化,而大数据的出现不仅使精准化营销变得更加高效,也极大地提升了服务和产品质量,使得消费者市场也发生一定程度的变化。消费者市场的划分必须要经过大数据才能实现精准的分析,这种分析结果面临的是个体消费者,而并非是群体,在这种情况下,电力系统的个性化营销在不久的将来一定会成为电力系统的营销主体。
运用大数据分析,制品新产品,拓展新市场
对电力系统来说,传统的以业务导向为核心的营销管理已经难以满足现代化的需求,通过大数据分析结果制定针对性的营销策略是十分重要的,这对于电力企业开拓市场和业务起着决定性作用。如腾讯在开发游戏时,总是先通过大数据对游戏用户行为进行精准的分析然后再推出产品,通过这种方法能使其在推出手游时更具有针对性和精准性。因此电力企业通过使用大数据分析客户的消费行为,开拓新业务、新市场是未来发展的必然趋势,根据大数据分析的结果为客户制定更加个性化的需求,并进一步制定针对性的营销渠道,拓宽产品领域。
依靠互联网技术,合作开展大数据营销,开展多元化服务
随着互联网营销的风靡,很多行业越来越重视网络营销,他们通过使用大数据进行网络营销。电力系统要想持续、稳定、可持续发展,必须要充分利用互联网进行大数据营销,除了要在电力系统领域建立相关的数据库,利用资源优势外,还要不断拓展业务,通过业务延伸实现电力企业的多元化发展模式。多样化服务的开展可从下述几方面着手:客户经理对客户的用电状况进行详细的统计和分析,提出的建议中不仅要有生产班次的安排,还必须要为客户的用电状况提供针对性的无功补偿。站在客户角度为客户节约电费着想,为客户的用电负荷进行合理、科学的指导,这不仅能有效地节约电费,还能有效减少设备的能耗。电力企业还要在基于自身优势的基础上,不定期检查用电设备的运营状况,及时排查运行过程中存在的安全隐患,这对确保配电网的稳定运行具有重要作用。要对所在区域的电网进行改造时,要及时通知大客户,并将规划改造的详细情况与大客户进行沟通交流,以得到客户的理解和支持,这对电力企业的稳定发展意义重大。
与税务部门合作减小电费回收风险
对电力企业来说,电费能否正常回收是确保其正常运作和提高经济效益的关键环节,尤其是大客户的电费回收,由于受到各种因素的影响,电费回收难一直是难以解决的难题。目前多数电力企业为了加强电费回收,通常采取如下措施:强化合同管理、建立信用评级制度、严格客户资质审核、高压用户电费担保模式等,在这些措施中,高压用户担保模式具有较好的效果,然而也存在一定的不足之处。对电力企业来说,仅仅具有采集客户的用电信息数据,对客户的资金信息难以准确把握,高压用户担保模式虽然让电力企业通过银行掌握相关的资金信息,然而很多企业的现金流并不通过银行,因此获得信息并不准确,在一定程度上影响电费回收风险的控制效果。为了有效解决这种弊端,可建立一种能将用电企业的资金流动信息整合到电力系统大数据库的营销管理中,而与税务部门进行合作能达到此目的。具体实施措施如下:首先,与税务部门协调,将电力系统大数据平台增加一个调取用电企业每月纳税信息的模块;其次,根据用电企业的纳税和银行信贷状况,计算电费回收风险指数,评估风险;最后,根据评估结果建立预警机制,对于部分电费回收风险较大的企业可采取各种手段介入电费回收。
4结束语
综上所述,大数据时代的来临给传统企业和互联网企业的营销管理带来巨大的冲击,越来越多的企业开始利用大数据进行营销管理,电力企业也要与时俱进,持续改革,在大数据时代下重构营销管理体系,以提高其核心竞争力和经济效益。
参考文献:
[1]宋宝香.数据库营销:大数据时代引发的企业市场营销变革[J].价值工程,2014,31(30):132-134.
[2]孙柏抓.大数据技术及其在电力行业中的应用[J].电气时化,.
[3]庞建军.大数据背景下的电力营销市场行业发展趋势分析[J].科技视界,2014(32):295-296.
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
246 浏览 4 回答
203 浏览 3 回答
239 浏览 3 回答
358 浏览 4 回答
89 浏览 4 回答
254 浏览 4 回答
293 浏览 2 回答
125 浏览 4 回答
189 浏览 5 回答
187 浏览 3 回答
158 浏览 7 回答
109 浏览 3 回答
308 浏览 3 回答
147 浏览 6 回答
336 浏览 4 回答