工程测量被广泛应用于测绘、国土规划、土建工程等多领域,包含普通测量、控制测量、地形测量、海洋测量、大地测量、道路测量、建筑测量、地下工程测量、桥梁工程测量、隧道工程测量等技能的专业技术。下面是我为大家整理的有关工程测量论文 范文 ,供大家参考。
《 工程测量在水电水利工程建设中的作用 》
摘要:工程测量可为水利工程建设提供准确的数据、资料,对水利工程建设具有重要意义,保持水利水电工程的安全运行,为人民生命财产安全提供着技术性的支持,对促进水利水电事业起着至关重要的作用。本文从以下几个方面对工程测量在水电水利工程建设中的重要作用进行了详细论述。
关键词:工程建设;工程测量;测量数据;作用
在水利水电工程中,测量是一项很重要的工作,它贯穿着水利水电工程建设全过程。经过准确、周密的测量后,水利工程可以顺利的按图施工,还可以为施工质量提供重要的技术支持与保障,更是质量检查的主要手段与 方法 。在规划设计水利工程时,需要进行地形资料的收集与整理,要提供提供中、小比例尺的地形图以及相关的信息,在进行建筑物的设计时需要注意,应该提供的是大比例尺地形图。所以,工程建设与工程测量是确保水利工程项目建设,能够取得成功的重要基础与关键。
1水电水利工程建设中工程测量重要性
(1)现今测量作为一门专业技术,以其能够将设备、建筑物等按照大小、形状、位置等不同设计要求在实地进行标定,以及够准确的采集和表示各种地貌及地物的几何信息等显著特点,被广泛应用到了各种工程建设之中。水利工程施工测量是保证工程施工测量过程处于受控状态,并严格按设计图纸、修改通知、技术规范和合同等的具体要求,进行控制测量的作业。通过资料和图纸进行规划和设计,同时选定最为经济、合理的方案,再通过测量与各项工程的施工相配合,并确保设计意图的正确执行。为满足竣工后工程在管理、使用、维修乃至扩建时的需要,还需编绘竣工图。工程测量数据还可为确定水利工程的堤坝高度、设计水利工程中的各项水工建筑等提供依据。
(2)水利工程结构定型的依据即工程测量,工程测量决定了水利工程的设计和定位,可以利用工程测量来确定水利工程基础、诊断水利工程问题,并且是诊断水利工程质量的最重要手段,各种测量数据可尽早的发现水利工程存在的问题,其意义十分重大。施工测量准备工作是保证整个工程施工测量工作顺利进行的重要环节,包括施工图纸的审核,监理单位提供的平面坐标点和高程点的交接及校核,施工测量方案的编制与数据的整理等。测量在高程放样方面可为模板施工提供准确的基准点,能够保证模板施工的平整度以及混凝土施工提供标高控制线,以确保其在施工后和平整度。工程测量可以为工程施工管理提供可靠的资料以及技术支持,并可对水利工程项目混凝土施工中混凝土种类的使用、混凝土厚度等提供精确的数据。
2水电水利工程测量存在的问题
(1)在水利工程建设要达到水利工程项目建设质量不断提升的目标,就需要进行详细的工程测量,并将工程测量的数据予以应用,以消除那些不可预见的因素确保工程质量。水利工程的施工质量对区域性经济发展和居民的生命安全有重要的影响,在水利水电工程建设阶段需要明确各个控制要点,满足工程实际测量体系的具体要求。在水利水电工程开工建设前期的测量工作,必须按照建设单位的建设规模和具体要求,以及按照项目所在地的自然条件和预期目的进行规模设计。否则将会出现测量数据的误差,就有可能导致水利工程在施工过程中出现严重的质量问题,甚至是引发重大的安全事故造成严重的经济损失,同时对社会方面也会增加严重的负面舆情。
(2)主体结构的施工过程中,要重视工程测量对多方面数据确定的影响,要做好水利工程的轴线、坡面的平整度、 渠道 的中线、大型水利工程建筑物垂直度控制以及主体标高控制等项工作,以防止出现、变形、偏位、渗漏等常见病害的发生,造成对水利工程质量的严重伤害,从而使水利工程项目在日常运行过程的安全性能受到影响。还要作好水工建筑物的变形观测,杜绝由于水工建筑物沉降、位移所引起的安全质量事故发生,以确保水利工程安全的稳定性。工程测量对水利水电工程建设有一定的指导性意义,因此需要结合施工工程设计形式的要求,对不同的设计环节进行分析,适应水利水电工程的建设需求。
3工程测量在水电水利工程建设中的管理与应用
(1)工程测量不但广泛的应用于建筑、土地测量等领域,其在水利工程建设也占据着重要的位置。工程测量能够为水利工程建设提供各项数据,可能保证水利工程建设基础的质量,从而确保整个水利工程项目的质量。随着计算机技术的飞速发展以及“互联网+”时代的到来,出现了地面测量、数字化测绘和RS、GIS、3S、GPS等,先进技术设备和集成测绘新技术的深入应用,使水利水电工程测量的手段和方法进行着快速的更新换代,同时也在不断的开拓着服务领域。这些测量方法最大的特点就是可对数据进行修正,能够让测量对象的参数得到及时修正,提升测量数据的精准度和连续性。
(2)在结合实际对测量工作进行合理的安排,有效提升测量精度,推动水利水电工程建设、促进区域经济健康发展的同时,还应该注重加强包括测量技术水平提高、责任意提升等施工管理人员综合能力素养方面的培养,这样有助于在具体的工作中,采取切实有效的 措施 与方法,以确保工程测量的准确性。需对具体管理人员以及施工人员的工程测量意识进行巩固与加强,通过培训等对他们的质量意识和责任意识进行不断完善,使其在工作能够做到按部就班、不出纰漏,按照流程根据施工图纸进行放样,确定控制高程,以为后面的施工奠定基础,从而加强工程质量。
(3)现阶段对大坝水底地形的测量,主要还是技术人员根据卫星定位技术与多波束探测仪之间的紧密配合来进行的。近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩,在此基础之上我们还应注意,要加强管理人员以及施工人员的测量意识,要进一步提高对测量工作的重视度,从而达到各个环节工程测量水平的全面提升。随着测量数据传播与应用的多样化、网络化及社会化和测量数据采集与处理的实时化、自动化及数字化,还有测量数据管理的标准化、规格化与科学化,水利水电工程测量技术一定会有一个辉煌的未来。
4结束语
工程测量精准的观测成果,为水利水电工程质量和人民生命财产的安全提供了坚实的保障。水利工程的规划、设计和施工以及运行管理等各环节、各阶段都离不开测量工作。工程测量工作要不断的 总结 工作 经验 ,提升专业素质,引用、掌握先进测量仪器,以满足不同时期水利水电工程的不同需求。
参考文献:
[1]杨玉平,杨玉华.论工程测量在水利水电工程建设中的重要性[J].江西测绘,2014,(4):53-54+57.
[2]李添萍.浅析水利水电工程质量检测的重要作用[J].青海科技,2010,(4):136-138.
《 建筑工程测量施工放样方法及应用 》
摘要:随着我国经济发展水平的不断提高,建筑行业得到了显著发展,建筑工程测量作为建筑工程的重要组成,在整个建筑施工前期阶段发挥着重要作用,需要不断对工程测量施工放样技术进行改进与创新才能满足建筑项目需求。本文将对建筑工程测量施工的放样方法与应用进行分析,从而表现做好测量放样处理对工程的重要性。
关键词:建筑工程测量施工放样方法技术探讨
建筑工程开展过程中对尺寸与施工范围有着严格要求与控制,这就需要应用测量放样技术,工程测量存在于整个施工阶段,对施工质量与施工开展有重要意义,需要对放样精度与测量结果反复对比,增强测量放样的精度。鉴于测量施工结果是施工依据与参照,一旦放样测量出现误差,将会影响立模、打桩、钢筋混凝土施工方方面面,在施工位置上容易出现偏差,对施工方带来损失。
1建筑工程测量施工放样概述
内涵
施工放样就是按照设计图标注的内容实地定标的过程。此过程需要使用到全站仪、测量仪器等设备,需要明确设计图纸上平面位置与高程,使用测量仪将实地位置标记出来,按照建筑物间几何关系将距离与特征确定出来,得到距离、高程、角度等数据,再结合控制点位置,在实际建筑中将建筑物特征点标定出来。
施工放样的主要方式
(1)平面放样。
施工放样分为平面位置放样与高程放样两种。平面位置放样较为常见的方法有直角坐标法、方向线交法以及交汇法,每一种方法基本操作方法都需要按照长度与角度进行;极坐标法则是使用数学极坐标原理将极轴确定为连线轴,将其中的某一极点作为放样控制坐标,将极点距离与放样极点连线方向到极点的夹角计算出来,将其作为放样参考[1]。通常,放样点距离控制点很近,需要极坐标与其保持120米距离,这样在测量时将更加方便,角度测量可以使用经纬仪或者测距仪,在使用电子测距仪时需要将控制点的距离延长,这样才能使放样作业更加方便、灵活;直角坐标法主要就是保持坐标轴的平行控制线,先沿横坐标放样,再沿控制线方向放样,只需将直角测设出来便可。
(2)高程放样。
几何水准测量法应用时需要先控制高程点,将控制点精度引入到施工范围内,使用方便固定与保存的方法,在水准点的保密上可以使用一次仪器完成高程放样。常规测量方法为:放样点附近到控制点存在高差,此时,需要使用较长钢尺对高程测设。具体施工中需要使用木桩将放样高程固定下来,使用红线对木桩侧面标记,需要结合具体情况注记高程。三角高程测量法:对水平距离与天顶距两点进行观测,将两点的高差计算出来,这种观测方法虽然简单,但受条件限制需对大地控制点高程测量。基本原理为:将地面两点设为a、b,站在a点观测b点标高,将竖向角度设为α,两点水平距离为S0,a点仪器高设为i1,i2作为标高,此时a、b两点间高差表示为:S0tgα,假设地球表面是一个平面结构,能利用上述公式将直线条件计算出来,大地测量时,还需要对地球弯曲与大气垂直折光度充分考虑[2]。为将三角高程测量精度提高,可以使用对向观测法,将两点高差推导出来。
建筑工程总定位放样方法
可以使用经纬仪将放样方向确定下来,再使用钢尺将测量距离,对地势较平坦的地区需要将定向设置在平缓点位置,再使用测距仪完成测量。曲线定位放线也是常用手段,分为直线、圆曲线等,先将圆曲线桩坐标设计出来,再对坐标加密处理,利用公式进一步对坐标测算。
2放样中注意的问题
放样工作中,有很多内容需要注意:首先,在主轴点放样中,可以使用三点交会法、三边测距法,不能仅使用两点测角定点法,需要选择至少三个方向,将校核点设定为第三点。如果使用测角定点,则要在观测时从四个方向出发,丈量好轮廓距离,不管使用哪种放样法,都需要与理论值对比,防止出现误差。在使用光电测距法放样定点式,现场至少选择一个放样点,丈量设计间距时,能够使校核作用增强。如果通过规则图放样使,则首先要考虑的是放样点间的几何关系,并反复检查几何关系,使用方向法放样时,在使用仪器时可以确定至少两个方向,对方位观察看是否合格,如果精度过低或者存在倾斜,要使用天顶距观测法,防止出现校核偏差。
3放样过程中的现场平差
现场平差就是指在现场放样,现场测量存在偏差消除时可以使用现场平差法。比如,在测放某一个方向时,需要先定点倒镜与正镜,最终将两个方向中点方向值确定下来。在建筑施工中,对测量放样精度有较高要求,分为严密性与松散性要求,从建筑物角度看,严密性与构件存在相关性,如果放样存在的误差较大,将使建筑质量降低。而建筑各部分间的联系则能体现松弛关系,这种情况下需要对建筑各部分有深入了解,将三维数据规定确定下来,也可以结合施工具体情况将放样影响度降低[3]。要想更深刻了解放样精度特征,需要使放样保持严密性,多对严密性进行考虑。如果针对松散构件,则要将误差分散开,确保总体工程质量不会受到影响。与现场平差不同的是,不是将误差全部消除,而是将其放样到质量相关的地方,对其进行吸纳。如果是精密性较高的建筑部位,则要从控制主轴线上实施放样工作,不用考虑控制网精度设计,在完成对主轴线测设后,就可以将建筑部位设定为主轴线基础,将主轴为基准才能确保建筑具备严密性,减少测设带来的精度误差,保证测设的严密性。在具体施工中,还能在主轴基础上将误差分散到建筑各个部分,防止误差过于集中。
4防范误差的对策
受多种因素的影响,测量经常出现误差,极大影响到了建筑施工的顺利开展,人员组成、操作以及施工管理都是重要的影响因素,必须切实做好这些内容的管理与防范才能减少误差。要想将测量放样误差减少,首先就要做好测量准备工作,反复校核设计图纸中的数据,并核实总平面数据与坐标,将基础图与平面图轴线位置确定下来,对符号与标高尺寸进行检查,确保各项数据、参数的准确,对总平面布设位置与分段尺寸进行设定,使分段长度与各段长度一致。其次,还要在人员组织分配上尽量选择技术精湛、有高度责任心的施工人员,将这些人员分为5组。在具体测量中,需要准备好测量仪器与工具,并调整好仪器的温度,增强仪器使用的效率与准确性。及时将测量结果记录下来,确保测量的数据能够更加真实、准确,并能在核对中及时发现问题、解决问题,必须经过两个人反复核对以后才能将最终结果确定下来,使用加减相消法能够及时发现错误。针对问题采取科学、有效的定位复测措施,完成定位以后,复测建筑平面几何尺寸与角度坐标,对建筑物图纸设计与标高是否相符进行核对,对建筑方向准确性进行检查,发现存在的问题。质量监督机构要定期对放样操作进行监督,将质量管理检查机构建设起来,采取自检、互检以及复检方法使放样精度得到保证。
5结束语
建筑工程测量施工是一个复杂且漫长的过程,是建筑施工中必不可少的组成,一个环节出现误差或者遗漏就会对整个施工质量造成影响,为施工单位带来损失。为此,加强放样管理,强化放样操作,做好校核平差工作显得非常重要。这有这样,才能将测量误差消除,确保建筑工程质量与测量精度。
参考文献
[1]邓志永,冯显征.建筑施工测量误差分析及对施工放样精度要求的探讨[J].建筑工程技术与设计,2014(22):779-779.
[2]袁俊利.采用传统测量技术进行复杂立交桥工程测量的方法和措施[J].建筑技术,2012,43(9):806-809.
[3]郝安华,贾涛.试论市政道路工程测量放样控制工作的要点与对策[J].商品与质量•建筑与发展,2014(5):
《 地铁工程测量技术及应用 》
摘要:在地铁工程项目中,地铁测绘工作及测量技术是项目建设的基础工作,它不仅贯穿于整个地铁工程建设始终,还对地铁工程质量产生重要影响。本文结合地铁测绘工作的实践经验,分析了常见的地铁工程测量技术,就具体的实践应用进行了分析探讨,以期对相关的地铁工程测绘工作有所启示作用。
关键词:地铁测绘;测量技术;地铁工程
伴随我国经济建设的蓬勃发展,各地城市交通建设也面临着全新的发展局面,作为城市交通的最基础建设之一,地铁工程与百姓生活密切相关,其工程质量自然也备受社会关注。地铁测绘工作是地铁工程的一项重要环节,它贯穿于整个地铁工程,从地铁工程开始筹划直到工程的后续运营,几乎都离不开测绘工作的支持。因此作为工程施工单位,需重视地铁工程测量技术的应用,保证测量的准确性,提高工程建设水平。本文结合具体工程实例,对上述问题进行探析,具有一定的参考价值。
1.地铁工程概述
为方便本次研究分析,本文选取了某地铁工程的具体实践建设作为研究参考对象。工程为某城市的地铁线路,是南北方向的主干线,线路全长约,其中地下线长约,地上线长约,该项工程是解决主城南北客运主流向出行需求的南北主轴线。结合本次地铁工程概述及以往的施工经验,总结本次地铁工程测绘工作和测量技术工作具有以下特点。首先,本次地铁工程项目属于城市地铁线路主干线,对城市交通影响较大;而且地铁项目投资大,工程建设周期长,因此地铁测绘工作要贯穿于整个项目始终,从地铁工程开始筹划直到工程的后续运营,都需要测量技术支持。其次,地铁工程界限规定严格,施工过程中存在的误差都必须受到严格控制,测量技术必须有精确性和可靠性的保障。最后,地铁测量工作必须抓好每一个细节,要通过测量技术的管理提高项目管理质量,对于施工过程中一些关键环节如铺轨基标测量、隧道施工方面测量等,都要做好严格把控,从整体上提高测量技术水平,为地铁工程打下良好的基础。
2.地铁工程测量技术分析
地铁测绘工作贯穿于整个地铁工程建设项目始终,具体包括工程勘测阶段、地铁施工图设计阶段、地铁施工测量阶段、地铁的运营期等几个方面。本文主要从施工阶段对地铁工程测量技术的应用进行分析,具体如下。
测量机器人的应用
测量机器人是本次地铁工程施工阶段的主要测量技术,其具体实质上属于一种智能型电子全站仪,它能够代替人工来进行一系列的测量工作,如自动搜索、跟踪、识别,此外它还能精确照准目标并获取角度、距离、三维坐标以及影像等信息,在实际工程中取得了良好的测量效果。该项技术的测量优势在于测量精度高,智能自动化,自动照准,锁定跟踪,遥控测量及自动调焦等。本次工程测量实例中应用了测量机器人,对于本次地铁工程测量的可靠性和效率都有明显提升,测量精度度高,测量与绘制工作可以一体化进行。在实际工程中发现,测量机器人有着良好的对数据实时分析处理能力,这对于提高本次工程数据处理能力,提升测量精度发挥了重要作用。此外,电子全站仪的应用实现了集成化管理,可以有效确保数据的共享交换,施工放样的质量和效率都大幅提升,安装误差控制在一个很小的范围内。
定向测量
传统的竖井定向测量手段均采用全站仪、垂准仪和陀螺经纬仪联合的方式,而在本次工程的具体实例中,应用了定向测量系统,在隧道盾构的情况下,利用自动化引导系统进行隧道开挖,而且定向测量能够实现实时显示,对于隧道轴线的点偏移值能够及时发现并处理,保证了隧道开挖的可靠性,提高了隧道开挖的精度程度,对于工程中所存在的误差值也能控制在理想的范围内。此外,在本次工程的地下顶管施工过程中,考虑到传统的施工手段技术(即人工测量)费时费力,施工效益低下,因此在本次实际施工中采用了顶管自动引导测量系统,由计算机远程控制测量机器人来自动完成作业,取得了非常理想的施工效果。
断面测量
在本次工程的断面测量上,施工单位综合采取了断面测量系统,该系统的具体内容包括了全站仪、数据采集器、计算机和觇牌等等。在隧道施工中的各个环节上,该断面测量系统取得了良好的实践效果,放样、测量、检测和计算等诸多环节上都没有出现问题。在隧道的初砌和开挖工作中,测量准确性得到了保证,同时测量效率提升,节约了大量的人力物力。本次施工发现,利用断面测量来保证隧道施工的测量工作,一方面可以大大提高施工进度,测量速度有保障;另一方面,在同等的施工时间内,测量精度可以控制在理想范围内,一般精度范围可控制在毫米,测量精准度大大提升。此外在本次施工工程中,还利用到了无反射和全自动棱镜三维断面测量,一方面保证了测量数据采集的高效性,另一方面由于实现了多断面共同测量,且操作简便高效,可靠性强,因此又进一步提高了测量效率。
无棱镜测量的应用
在本次的地铁工程施工中,还涉及到了无棱镜测量机器人的具体应用。该项技术通过辐射测量极坐标的方式,准确并高效地完成了一系列的工测量工作,具体包括了隧道掘进放样、断面测量、围岩净空位移量测等等,测量精确度高,测量效率好。该项测量技术进行了有针对性的创新,在工程中利用计算机自动处理,有效减少了工程成本,测量起来也十分方便。该项测量技术的一个典型特点是把设计图中的地铁相应物体的位置及大小都放到实地中,这种趋近于真实的参考参照,大大提高了本次工程的放样精确程度。此外,施工基坑监测系统能够实现对数据的及时分析管理,对于地铁基坑监测项目也具有非常高的可行性。
地铁施工铺设阶段
在地铁施工铺设阶段,本次施工也采用了测量机器人。该项技术的主要原理是应用到了无线传输技术,通过它将测量数据持续传输到机载计算机,然后再利用计算机实现对地铁铺设的精确控制。通过该项技术在本次工程施工中的应用,施工铺设的安全性与质量都得到了有效保障。同时在铺设精度得到有效控制的前提下,铺设成本大大降低,工程经济效益得到了有效保证。此外在施工路面扫描系统中,测量机器人也有很高的应用价值,可将监测目标分为圆棱镜,无棱镜和反射贴片三种。
竣工测量阶段
在本次项目的地铁工程竣工阶段,也需要进行大量的数据测量,这些测量的数据将作为竣工验收的参考,并做相应好存档工作。这些具体的测量内容包括了地铁结构的平面位置、埋深、线路等诸多方面。通过测量机器人的应用,可以实现对相关建筑物(包括附属结构)的尺寸测量、线路及高程测量等,提升了轨道测量精度,保障了地铁工程测量放样的顺利实现。
总结
综上所述,地铁测绘工作是一项系统且复杂的内容,它贯穿于整个工程始终,并对工程质量提供了强有力的保障。在当前各地城市交通建设不断发展的新时期,地铁工程自然占据了十分重要的位置,相关单位需要在保证工程质量的前提下,加强工程测量管理工作,强化对地铁工程测量技术的研究,保证测量各个环节的质量与水平,确保工程顺利开展并取得良好的综合效益,推动我国地铁交通事业的发展迈向一个新高度。
参考文献:
[1]张铁斌.地铁工程测量技术及应用分析[J].科技展望,2015,09:39.
[2]龚振文,龙晓敏,胡朝英.昆明地铁工程测量技术分析及测绘新技术应用[J].山西建筑,2013,33:208-210.
[3]程栋.地铁工程测量中平面联系测量的应用[J].科技展望,2015,35:35.
有关有关工程测量论文范文推荐:
1. 有关工程测量论文范文
2. 有关工程测量毕业论文范文
3. 工程测量毕业论文范文
4. 工程测量工程论文范文精选
5. 浅谈工程测量论文范文
6. 工程测量毕业论文例文
7. 工程测量技术论文
GNSS测量是用接收机与天线组成的测量系统,我整理了gnss测量技术论文,有兴趣的亲可以来阅读一下!
GNSS测量技术在城市测量中的应用
摘要:GNSS城市测量技术内容主要包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,本文主要就这几方面的技术应用作了简要应用分析。
关键词:GNSS;CORS系统;控制网;RTK测量;高程测量
Abstract: GNSS measurement technology mainly includes the construction of city, city CORS city GNSS network construction, city, city GNSS RTK measurement of GNSS height measurement, this paper focuses on several aspects of this technology are briefly applied analysis.
Key words: GNSS; CORS system; control network; RTK measurement; height measurement
中图分类号:P224
全球导航卫星系统(GNSS)技术的应用,导致传统测量的布网方法、作业手段和内外作业程序发生了根本性的变革,为城市测量提供了一种崭新的技术手段和方法。全球导航定位系统具有全球性、全天候、高效率、多功能、高精度的特点。在用于大地定位时,测站间不要求互相通视,无需造标,不受天气条件影响。一次观测,可以获得测站点的三维坐标。卫星定位城市测量技术内容包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,适用于城市各等级控制测量、工程测量、变形测量和地形测量等。GNSS技术将以高速度、高精度、低成本为城市建设服务,快速、及时、准确地为城市规划、建设和管理提供测绘保障。
一、城市CORS系统建设
GNSS技术已在国内导航、定位、科学研究领域得到广泛应用。一个城市只应建设一个城市CORS系统,避免重复建设和资源浪费。系统建设不但要满足城市测绘部门对定位的需求,还要综合考虑地震、气象、土地和其他行业对系统的需求[1]。具体实施可根据城市和经济发展情况可以一次建设完成,也可分期建设,城市CORS系统作为城市重要的空间数据基础设施之一,首先要满足城市对空间定位的不同服务需求。
城市CORS网的布设不同于城市常规GNSS网的布设,常规GNSS网的边长一般较短,而CORS网站间距离可根据系统功能设计而适当加长。下表1列举了部分城市及地区已建成的CORS网平均边长。
表1部分城市及地区CORS网
根据对部分城市及地区已建成的CORS网平均边长的统计和分析,制定了城市CORS网的平均边长为40km这一指标。为了满足CORS系统厘米级的实时定位服务精度。在具体布设中可以根据城市地理位置、城市规模和建设应用等情况,有针对性地确定CORS站密度。但是相邻CORS站最长间距不宜超过80 km。由于地壳形变、自然灾害、地下水的过量开采等原因,可能导致城市CORS站站址的不稳定,应定期对CORS网进行坐标解算,解算周期不应超过一年。CORS站坐标的平面位置变化不应超过;高程变化不应超过3cm。当CORS站坐标的变化量不符合规定时,应分析原因,并应及时更新CORS站坐标或另选新站。对于地面沉降严重的区域,可另行制定高程变化的变化量限值。
二、城市GNSS控制网建设
GNSS网的布设应遵循从整体到局部、分级布网的原则。城市首级GNSS网应一次全面布设,加密GNSS网可逐级布网、越级布网或布设同级全面网。GNSS网布设特征:如果某GNSS网由n个点组成,每点的设站次数为m,用N台GNSS接收机来进行观测时,观测的时段数C:C=n﹒m/N一个时段中用N台GNSS接收机来进行同步观测时,可组成非独立的基线向量数:N(N-1)/2,所以该GPS网中共有非独立的基线向量数:J总=C﹒N(N-1)/2每个时段中可测定的独立基线向量数为N-1条,故在该网中独立基线向量数总数为:J独= C﹒(N-1)
在由n个点组成的GNSS网中只需要有(n-1)条基线向量就可以确定这n个点的相对位置(如果其中有一个点的坐标是已知的,就可以确定其余n-1个点的坐标)。因此, 该GNSS网的必要基线向量数:J必= n-1网中实际测定的独立基线向量数为C﹒(N-1)条,所以,网中的多余基线向量数为:J多= J独- J必= C﹒(N-1)-(n-1)举例:某GNSS网由80个点组成,现准备用5台GNSS接收机来进行观测,每个点重复设站为4次。则全网的观测时段数C为:C=n﹒m/N=80×4/5=64全网共有基线向量数:J总=C﹒N(N-1)/2=64×5×4/2=640条
网中独立基线向量数为:J独= C﹒(N-1)=64×4=256条。GNSS网的必要基线向量数:J必= n-1=80-1=79条。网中的多余基线向量数为:J多= J独- J必= 256-79=177条。三、城市GNSS RTK测量技术及其应用
RTK测量可采用单基站RTK测量和网络RTK测量两种方法进行。已建立CORS系统的城市,宜采用网络RTK测量。在实际作业过程中,有一些通信信号较弱或覆盖不到的困难地区,无法实时进行单基站RTK和网络RTK测量,现场可以采用后处理动态测量的模式进行RTK测量。单基站RTK测量的基准站设置是关键性的第一步。基准站的选择直接影响到作业半径和效率。若基准站选择不当,基准站观测数据质量和无线通讯信号传播质量无法保证。该基准站支持的所有流动站都不能顺利作业,或者造成基准站频繁迁站,影响工作进程。基准站的设置要与当前作业方式匹配,还要与流动站的模式匹配。
静态GNSS控制网测量可以通过基线精度、重复基线差及环闭合差和平差等作业过程对成果进行检验;RTK测量每个测设点都是相互独立的,点与点之间没有直接关系,对于因意外产生的粗差无法发现[2]。因此,为提高RTK测量的可靠性,保证仪器各种设置正确,测量过程中应选择一定数量的已知坐标点进行测量校核,以检查用户站设备的可靠性以及坐标转换参数的准确性。
利用已有RTK测设的控制点时,应进行坐标或几何检核。对已有的RTK控制点,可以作为RTK测量时的校核点,也可以作为同等级布设的控制点。该校核点如果要作为控制点使用时,应与新布设的控制点统一。统一进行控制点间的边长、角度以及坐标检核,应达到精度要求。RTK测量的精度会受到各种因素的影响。由于载波相位进行测量具有多值性,初始化过程中各种误差以及数据链传输过程中外界环境、电磁波干扰产生的误差的影响,可能导致整周未知数解算不可靠。同时,RTK测设点间的相互独立,与传统测量强调的相邻点间相对关系有着根本上的区别。
四、城市GNSS高程测量技术及实例应用
GNSS高程测量按作业过程应分为高程异常模型的建立、GNSS测量和数据处理。高程异常模型可利用已有模型。高程系统中最常用的有正高系统(以大地水准面作为参考基准面)和正常高系统(以似大地水准面为参考基准面)。我国使用的高程系统是正常高系统。采用GNSS测量技术测定地面点的高程是以地心坐标的地球椭球面为基准的大地高H,大地水准面和似大地水准面相对于地球椭球面有一个高度差,分别称为大地水准面差距N和高程异常ζ。大地高H、正高Hg和正常高Hγ之间按下列公式计算: H=Hg+NH=Hγ+ζ如果能够比较精确地确定地面点的高程异常,则用GNSS测量方法可精确测定地面点的正常高。
GNSS静态测量技术要求浅析
摘要:本文介绍了常用规范中有关卫星定位静态测量的技术要求,并对各规范的不同技术要求进行了比较与分析。
关键词GNSS静态测量GNSS测量常用规范GNSS技术要求比较与分析
中图分类号:P258]文献标识码: A 文章编号:
卫星定位技术具有全球性、高效率、多功能、高精度的特点。卫星定位静态测量其定位精度高达10-6~10-7,广泛应用于各种类型和等级的控制网的建立。有关卫星定位测量(以下简称GNSS测量)常用的规范较多,各个规范分别从相应的专业标准制定了详细的GNSS测量技术要求,使GNSS测量的应用具有良好的可操作性,发挥了巨大的作用。下面就常用规范中有关GNSS静态测量的技术要求作一些比较与分析:
1、坐标系统
满足测区内投影所引起的长度变形值不大于,是建立或选择平面坐标系的前提条件和基本准则;而确定控制网的位置基准则是GNSS网基准设计的主要问题,可根据测区的地理位置、平均高程来选择适宜的坐标系统。GNSS测量所获得的是空间基线向量或三维坐标向量,属于其相应的空间坐标系(WGS-84坐标系)。规范要求应将其转换至国家统一的高斯正形投影分带平面直角坐标系(2000国家大地坐标系、1954年北京坐标系、1980西安坐标系)或建筑施工坐标系等其他独立的坐标系的坐标。转换时通常应具备坐标系统相对应的参考椭球及基本参数、坐标系的中央子午线经度、坐标系的投影面高程及测区平均高程异常值、起算点的坐标和起始方位角以及纵、横坐标加常数等。
2、精度分级和技术设计
GNSS网精度指标通常采用相邻点的基线长度中误差公式:来衡量,GNSS网的全中误差不应超过其理论值。按照精度和用途,《全球卫星定位系统(GPS)测量规范》(以下简称《GNSS国标》)把GNSS测量的等级划分为A、B、C、D、E五个等级,并按相邻点基线向量中误差的水平分量、垂直分量来衡量相应级别的精度。而其它规范则是采用传统的三角形网按边长和精度来划分等级,用最弱间接边的相对中误差来衡量精度。相比较而言,前者较抽象,后者虽然较直观,但是遗憾的是,大多数的GPS随机软件中给出的却是直接观测边的精度。技术设计是为了得到最优化的布测方案,应根据项目的实际情况、GNSS网的目的、精度要求、控制点的密度、卫星状况、接收机的类型和数量、道路交通状况以及测区已有测量资料等,依据国家有关规范(规程),并按照优化设计的原则进行综合设计。
规范要求:GNSS网应由一个或若干个独立观测环构成,各同步图形之间采用边连式或网连式,避免出现自由基线。因为自由基线不参与构成几何闭合图形,不具备检查和发现观测成果中粗差的能力。限制最简独立环的边数是为了避免基线误差互相掩盖,含较大误差的边不能被有效地捡出,从而导致网的可靠性降低。要求对独立观测边构成的同步环和异步环进行闭合差检查,是为了检查观测质量、评定精度。
3、选点、埋石
如果点位不符合GNSS测量要求,将引起失锁、周跳、多路径效应误差,GNSS观测中的粗差及劣质观测值就增多。首先要求测站点的顶空开阔。由于GNSS卫星信号本身很微弱,所以GNSS测量选点时还应注意:避开周围的电磁波干扰源以保证GNSS接收机能正常工作;限制卫星高度角以减弱对流层的影响;远离强烈反射卫星信号的物体以减弱多路径效应的影响。规范要求应先进行图上技术设计和优化,并进行精度估算,最后再按技术设计的要求进行现场踏勘落实,对符合要求的旧有的控制点要充分利用。对GNSS点的标石和标志的埋设要求稳固,以易于长期保存、利用。
4、GNSS观测
GNSS接收机应在检定合格的有效期内使用,其标称精度应高于相应等级GNSS网的规范要求。由于双频接收机采用双频改正技术,可以很好地消除电离层折射误差的影响,所以基线边较长或等级较高的GNSS网采用双频接收机观测,精度提高尤为显著。为保证GNSS网中各相邻点具有较高的相对精度,网中距离较近的点一定要进行同步观测,以获得它们之间的直接观测基线。
各规范还对卫星截止高度角、同时观测的有效卫星数、时段长度、数据采样间隔率、PDOP值以及同步观测的接收机数目作了具体的规定。
随着卫星高度的降低,卫星信号接收的信噪比随之减小,对流层影响加大,测量误差也随之增大。各规范一般都要求卫星高度角不低于15°,这样可以在简化模型条件下保证所需的测量精度。
规定有效卫星数是因为同步观测的卫星越多,多余观测量就越多,成果精度也相应地提高。
观测时段长度和数据采样间隔率的限制是为了获得足够的数据量,从而有利于整周模糊度的解算和载波相位观测值周跳的探测。
PDOP值的大小与观测卫星在空间的几何分布有关,限制PDOP值是为了选择最佳的观测时间段,从而获得高精度的观测值。
有别于其他规范的重复设站数的规定,《工程测量规范》(以下简称《工规》)则提出了“独立基线的观测总数不少于必要观测基线数的倍”的规定。笔者认为:这两种提法的根本都在于增加多余的观测基线。通常作业中,按仪器的标称精度约有3% ~5%左右的闭合差不合格,有了多余基线,那么就可以舍去不合格的基线,从而保证网的观测质量。对于GNSS观测时间的确定,笔者在作业中发现,GNSS卫星信号良好的时候,采用双频接收机进行城市四等和一级GNSS测量时,由于其边长相对较短,观测时段分别采用30~40分钟和20~30分钟是可行的,从而提高工作效率。
5、成果资料
GNSS测量是基础性的测量成果,应长期保存,工作完成后,应提交完整的成果资料。包括:任务或合同书、技术设计书、已有成果资料的利用情况、仪器检校记录资料、点之记、外业原始观测记录、平差计算手簿、技术总结、检查报告、设计网图、观测网图、数据处理用图、成果图、坐标等成果资料及说明以及以上资料的电子文件光盘。
以上仅就常用规范中有关GNSS静态测量的技术要求作了一些浅显的比较与分析,在进行GNSS静态测量时,我们应根据项目的特点、精度和密度等要求,依据合适的规范进行设计、施测,以充分发挥GNSS技术的先进性、优越性。
参考文献
[1] 全球定位系统(GPS)测量规范(GB/T18314-2009),测绘出版社,2009。
[2] 卫星定位城市测量技术规范(CJJ/T73-2010),中国建筑工业出版社,2010。
[3] 铁路工程卫星定位测量规范(TB10054-2010),中国铁道出版社,2010。
[4] 李征航、黄劲松 GPS测量与数据处理 武汉大学出版社,2010。
三坐标测量技术广泛应用于机械制造、电子、汽车和航空工业中。下面是我为大家精心推荐的三坐标测量技术论文,希望能够对您有所帮助。
基于三坐标测量仪的精密测量技术研究
摘 要:三坐标测量仪的出现本身就是测量行业的一大革命,它不但大大提高了测量精度,而且也在智能化上有很大的进步,对于测量行业的发展有着很深的影响。为进一步提高我国齿轮行业的产品质量,提高行业竞争力,本文对三坐标测量仪的精密测量技术进行研究,探讨与其他仪器精确度方面的优缺点及发展趋势,从而保证我国齿轮产品的质量。
关键词:三坐标测量仪 测量行业 精密测量技术
中图分类号:TH721 文献标识码:A 文章编号:1672-3791(2013)06(b)-0073-01
三坐标测量仪CMM(Coordinate MeasurMahine)是20世纪60年代后期发展起来的一种高效率、新型、精密的测量设备, 它广泛应用于机械制造、电子、汽车和航空工业中。三坐标测量仪可以进行零部件尺寸、形状和相互位置检测,可以用于划线、定中心孔,尤其对连续曲面进行扫描得到曲面数据及表达。获取表面数据的采集, 是产品逆向工程实现的基础和关键技术之一。
1 三坐标测量仪对测量行业的进步作用
整个测量以及机械行业的快速进步,不断地向三坐标测量仪提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、检测微损甚至无损、遥感遥测遥控更远距、使用更方便、成本更低廉、无污染等,同时也为三坐标测量仪科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。
解决了复杂形状表面轮廓尺寸的测量
实现了对基本的几何元素的高效率、高精度测量与评定,解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测。
提高了测量精度
提高了三维测量的测量精度,目前高精度的坐标测量机的单轴精度,每米长度内可达1 um以内,三维空间精度可达1~2 um。对于车间检测用的三坐标测量仪,每米测量精度单轴也达3~4 um。由于三坐标测量仪可与数控机床和加工中心配套组成生产加工线或柔性制造系统,从而促进了自动生产线的发展。
提高了测量效率
随着三坐标测量仪的精度不断提高,自动化程序不断发展,促进了三维测量技术的进步,大大地提高了测量效率。尤其是电子计算机的引入,不但便于数据处理,而且可以完成CNC的控制功能,可缩短测量时间达95%以上。
降低用户测量成本
随着激光扫描技术的不断成熟,同时满足了高精度测量(质量检测)和激光扫描(逆向工程)多功能复合型的三坐标测量仪的发展更好地满足了用户需求,大大降低用户测量成本,提高工作效率。
2 坐标测量仪与其他仪器的比较
影像测量仪
作为最初的精密测量仪器,影像测量仪是一个见证了整个行业开始,它提供了发展的产业平台的基础。然而,由于影像测量仪测量技术略显粗糙,因此,二次元影像仪成为行业发展的时代的产物,它是精密测量技术和功能方面,产业的发展提供技术支持。但是,即便如此,二次元影像测量仪还没有完全满足客户的需求检测,它不能提供一个解决方案的立体检查,在这种情况下,开发和生产出三坐标测量仪。当然,在此过程中制造商中过渡阶段的元/m3的出现提供了帮助。这是一个从开始到目前的整个发展阶段的精密测量仪器。
三坐标测量仪
三坐标测量仪采用花岗石仪座,提高了基准平面的精度,缩小了仪器自身的精度误差。活动表座可在仪座的任何位置进行测量。仪座不生锈,使用保管方便。
三坐标测量仪的测量精度是非常高的,三坐标测量仪器和其他测量仪器相比,这点占据一个很大的优势。例如:制造精密量具,总体上是好的,用游标卡尺水平测量工具,测量精度可达+/级。但是,一般水平的三坐标测量仪,测量精度就可以高达+/。
通过上述分析,我们从二次元和三坐标的功能应用上可以看出,相较于二次元影像测量仪,三坐标测量仪可说是更加的功能全面,因为它除了测量工件的长宽参数,还可以检测工件的高,这是影像测量仪所无法达到的。
3 三坐标测量仪测量技术的发展趋势
品种更加灵活多样
在我国,人们已经越来越认识到测量检测和适当的测量装置的重要性,不仅可以帮助用户轻松地提高产品质量,也将提高生产效率,因此获得制造先进的测量设备,可以为用户提供先进的测量解决方案而得到高投资回报率。中国模具未来发展将是更大规模的、高精确度的,要求也会越来越多,多功能复合模具已成为一个热点。提高塑料模具,模具的比例及适应高压气体辅助注射成型过程的模具也将随之发展。物种多样性的变化将更加迅速,这就要求除了精确测量精度高,测量设备也更灵活,更需要轻松的测量环境随时随地方便改造,这样才能跟上发展的步伐。
逐渐向新的应用领域开发
“以市场为导向,以客户为导向”这一趋势使得三坐标测量设备技术现已广泛使用在工业应用领域的大型机器及零部件的精确测量,测量范围大,精度高,而且非常耐用,非常适合工厂环境。世界范围内获得了广泛的认可和肯定,作为行业首选三坐标测量仪器技术,将继续开发新的应用领域的测量。
4 结论
综上所述,随着生产规模日益扩大,加工精度不断提高,除了需要高精度三坐标测量仪的计量室检测外,为了便于直接检测工件,测量往往需要在加工车间进行,或将测量机直接串连到生产线上。检验的零件数量加大,科学化管理程度加强,因而需要各种精度的坐标测量机,以满足生产的需要。随着市场的不断发展壮大,三次元的产品技术也在不断的提高,三坐标测量技术也在不断进步。
参考文献
[1] 刘贵云.大批量定制生产的产品族设计技术综述[J].机械设计,2012(8):1-4.
[2] 龚先新.大批量定制技术及其应用[M].北京:机械工业出版,2003.
[3] 丁俊健,谈士力,宋晓峰.等.基于BP神经网络的ETO产品配置设计方法[J].工程设计学报,2010,14(3):199-203.
[4] 刘大有.一个面向大批量定制的重用配置方法[J].电子学报,2011,2:383-388.
[5] 孟静.变型零件NC程序主模板设计[J].中国机械工程,2011,17(18):1871-1875.
点击下页还有更多>>>三坐标测量技术论文
148 浏览 3 回答
360 浏览 3 回答
235 浏览 3 回答
110 浏览 7 回答
130 浏览 3 回答
208 浏览 4 回答
350 浏览 3 回答
85 浏览 4 回答
209 浏览 5 回答
199 浏览 5 回答
305 浏览 4 回答
312 浏览 6 回答
332 浏览 2 回答
241 浏览 4 回答
312 浏览 2 回答