资料 宇宙是如何诞生并且演化到今天的?其未来又将走向何方?这个科学命题——或者说哲学命题,数千年来一直困扰着人类。 大约14年前,人们一度以为有了完美的答案:通过对于宇宙背景微波辐射的观测,天文学家最终验证了1929年爱德文哈勃(Edwin Hubble)的猜想,即宇宙诞生于大约137亿年前的大爆炸(Big Bang)。之后,随着宇宙的演化,银河系、太阳系、地球,乃至我们人类自身,都陆续登场。 2006年10月,正是凭借这一重要成就,美国科学家乔治斯穆特(George F Smoot)、约翰马瑟(John C Mather)分享了该年度的诺贝尔物理学奖。 但我们对宇宙的了解,显然也还刚刚开始。就在此一个月后,美国航空航天局(NASA)公布的最新研究结果表明:至少在90亿年前,一种被称为“暗能量”(dark energy)的神秘力量已经存在。 也就是说,在整个宇宙诞生后不到50亿年时,就开始受到暗能量影响。而此前,科学家普遍认为,在宇宙的早期,或许这种力量并不存在,因为那个时候主宰一切的还是我们熟悉的引力。 尽管这一结果仍不能确定地告诉我们宇宙的未来是怎样的,但显然,它为我们彻底理解宇宙的运行规律带来了新的曙光。相关的论文也将发表在2007年2月美国《天体物理学报》(The Astrophysical Journal)上。 这一研究小组的负责人、美国约翰霍普金斯大学(John Hopkins)教授阿德姆瑞斯(Adam Riess)在接受《财经》记者采访时表示:“我们距离真正了解暗能量仍然很远。但很显然,这是非常重要的一步,因为它给出了更多的‘线索’(clue)。” 宇宙为什么加速膨胀? 暗能量的发现过程极富戏剧性。 按照宇宙大爆炸理论,在大爆炸发生之后,随着时间的推移,宇宙的膨胀速度将因为物质之间的引力作用而逐渐减慢,就像缓慢踩了刹车的汽车一样。也就是说,距离地球相对遥远的星系,其膨胀速度应该比那些近的星系慢一些。 但1998年,美国加州大学伯克利分校(UC Berkeley)物理学教授、劳伦斯伯克利国家实验室(LBNL)高级科学家索尔皮尔姆特(Saul Perlmutter),以及澳大利亚国立大学布赖恩施密特(Brian Schmidt)分别领导的两个小组,通过观测发现,那些遥远的星系正在以越来越快的速度远离我们。 换句话说,宇宙是在加速膨胀,仿佛一辆不断踩油门的汽车,而不是像此前科学家所预测的那样处于减速膨胀状态。 这样一个完全出乎意料的观测结果,从根本上动摇了对宇宙的传统理解。那么到底是什么样的力量,在促使所有的星系或者其他物质加速远离呢? 科学家们将这种与引力相反的斥力来源,称为“暗能量”。但“暗能量”到底意味着什么?至今我们能够给出的,只是一个十分粗略的宇宙结构“金字塔图景”: 我们所熟悉的世界,即由普通的原子构成的一草一木、山河星月,仅占整个宇宙的4%,相当于金字塔顶的那一块。 下面的22%,则为暗物质。这种物质由仍然未知的粒子构成,它们不参与电磁作用,无法用肉眼看到。但其和普通物质一样,参与引力作用,因此仍可能探测到。 作为塔基的74%,则由最为神秘的暗能量构成。它无处不在,无时不在,由于我们对其性质知之甚少,所以科学家还不清楚如何在实验室中验证其存在。惟一的手段,仍然是通过天文观测这种间接手段来了解其奥秘。 对Ia类型超新星(supernova)的爆发进行观测,则是目前最主要观测手段。这种超新星是由双星系统中的白矮星(white dwarf)爆炸形成的,亮度几乎恒定。这样,通过测量其亮度,就可以知道其和地球之间的距离,进而了解其速度。 借助哈勃这样灵敏的天文仪器的帮助,我们至少可以观测到90亿光年之外,即了解宇宙在90亿年前的信息。 霍普金斯大学教授阿德姆瑞斯给我们展示的最新“暗能量”场景如下: 在大爆炸后的初期,宇宙经历了一个急速膨胀阶段。此后,由于暗物质以及物质之间的距离非常接近,在引力作用下,宇宙的膨胀速度开始减速。 然而,至少在90亿年前,宇宙中另外一种力量——表现为排斥力量的暗能量已经出现,并且开始逐步抵消引力作用。 随着宇宙的膨胀,不断增长的暗能量终于在大约50亿至60亿年前超越引力。此后,宇宙从减速膨胀,转变为加速膨胀状态,并且一直持续至今。 爱因斯坦的遗产 中国科学技术大学物理学教授李淼曾经半开玩笑地表示:“有多少暗能量专家,就有多少暗能量模型。”也许这种说法不无夸张之处,但暗能量在理论方面的混沌状况,从中也可见一斑。 其中,最具戏剧性的理论,则是复活爱因斯坦当年提出的“宇宙常数”(cosmological constant)。1917年,被认为是整个20世纪最伟大的科学家阿尔伯特爱因斯坦(Albert Einstein),为了建立一个稳态宇宙模型,最早提出了这个概念。不过,后来就连他本人也承认,“宇宙常数”只是一个错误的概念。 但暗能量的存在,则为宇宙常数提供了新的可能性。如果暗能量就是这个宇宙常数的话,那么它的力量强弱将只和宇宙的大小有关。随着宇宙的膨胀,其体积逐渐增大,因而暗能量也将逐渐增大。最终,它会达到一个临界点,使得宇宙从减速状态变成加速状态,并且一直加速下去。 中国科学院高能物理所研究员张新民在接受《财经》记者采访时指出,迄今为止的观测结果,包括瑞斯最新的结果在内,与爱因斯坦的宇宙常数理论“都很符合”。 但是,宇宙常数距离成为一种确定性的暗能量理论还差得很远。一些科学家半开玩笑地说,按照这种模型,宇宙将一成不变地加速膨胀下去,未免太“枯燥”(boring)了一些。 当然,最为致命的是,按照量子场论计算出来的宇宙常数,比天文观测获得的上限至少也要高出10的120次方倍。 一个最为诡异但不乏科学依据的解释,是“多宇宙论”。观测和理论或许都没有错,事实上,在我们生存的宇宙之外,还存在多到无法计数的其他的宇宙。科学家们可以想像到的宇宙数量不是以万或者亿来计算的,很可能多到10的1000次方个。 每个宇宙都有不同的宇宙常数,而我们恰恰生存在一个宇宙常数很小的宇宙中。仿佛冥冥之中有一个“上帝之手”,把一个适合智慧生命生存的宇宙呈现在我们面前。 但对于这种寄希望多宇宙存在的“人择原理”(anthropic principle),在天文学家和物理学家中间都存在很大的争议。中国科学院高能物理所研究员张新民对《财经》记者说,很多人认为这仅仅是一种猜想而已,还远远谈不上“原理”。 更为尖锐的批评,则认为这种解释与其说是一种科学理论,倒不如说更像一种宗教信仰。 为避免这种冲突,科学家们提出个各种暗能量理论,来代替宇宙常数模型。其中比较有代表性的包括精质(quintessence)模型、幽灵(phantom)模型等,张新民和中国科学技术大学物理学教授李淼也分别提出了精灵(quintom)和全息(holographic)模型。 宇宙的未来 如果这些替代的暗能量理论能够成立,它们所指向的将是截然不同的宇宙未来: 根据精质等动力学标量场(scalar field)模型,宇宙的未来将复杂得多;也许将继续加速膨胀下去,也许会减缓膨胀的速度,甚至走向收缩,导致宇宙最终以与大爆炸相反的“大坍缩”(big crunch)收场。 而根据幽灵模型,暗能量将不断增大,导致宇宙以越来越快的加速度膨胀。最终,宇宙将走向“大撕裂”(big rip)。 精灵模型则给出了一个“振荡的未来”。张新民对《财经》表示,根据他提出的这一理论,整个宇宙将在加速膨胀和减速膨胀之间反复演绎,“大坍缩”和“大撕裂”这两种极端的情况都不会出现。 最大的困难,在于迄今为止,我们能够研究暗能量的手段仍然十分有限。目前,最主流的仍然是借助超新星的观测。但有些人担心,特别是在宇宙早期,可能超新星的亮度也不是恒定的,它也有自己的演化过程。 即使这种担心可以排除,鉴于这些超新星距离地球非常非常遥远,观测它们的难度,在瑞斯看来就像在两个月球的距离之外观测一个60瓦的灯泡。即使哈勃望远镜具有非常高的敏感度,也存在难以消除的系统误差。 通过对大尺度宇宙结构(比如星系团等)的研究,或许能为暗能量提供新的线索。一旦暗能量存在的话,星系团的形成过程可能要更慢一些,因为引力需要先克服这种斥力。 目前,一个空间探测计划斯隆数字巡天(SDSS)已经完成了第一阶段为期五年的运行,一旦全部完成之后,这一足以覆盖四分之一的天空的精细光学成像设备,无疑将披露更多的细节。 据悉,目前中国科学家也正在试图利用北京附近新上马的LAMOST(大天区面积多目标光纤光谱望远镜)来观测超新星,从而探索在中国首次进行暗能量实验研究的可能性。而利用伽马暴(超大质量星体爆发而形成的宇宙高能辐射),也许将为进一步研究更早期的暗能量提供间接手段。 北京师范大学物理学教授朱宗宏在接受《财经》记者采访时指出,目前对于伽马暴天文学的探索还处在初级阶段,有点类似于1998年暗能量刚被发现时的超新星天文学,但其某些性质,从长期来看仍然有可能用来研究暗能量。 那么,是否有可能利用实验室来直接研究暗能量呢?一些人已经宣称,可以利用纳米技术来实现这一目标。瑞斯在接受《财经》采访时表示,一些科学家也希望利用短距离(short-range)的引力实验,发现暗能量的线索。 美国加州理工学院(CIT)的物理学家西恩卡罗尔(Sean Carroll)也对《财经》记者强调,要找到一个更具确定性的模型,不仅需要天文学上的数据,可能更需要来自粒子物理学的证据。尤其是2007年即将在欧洲投入运行的大型强子对撞机(LHC),或许“我们可以期待”。 不过,由于对暗能量的性质、包括与其他物质的反应机理还不清楚,很多科学家认为,短期之内还无法对实验室内的工作寄予太大希望;更为现实的渠道,或许仍来自天文观测。 如果不出意外,普朗克(PLANCK)探测器将于2007年一季度正式升空,它将对天空进行更加精密的探测。在接受《财经》记者采访时,皮尔姆特也表示,由它所在的实验室负责设计的超新星加速探测器(SNAP),按照计划将于2013年或者2014年升空。 “在未来五到十年中,我们对于暗能量的性质或许将有更加清晰的了解。”英国诺丁汉大学物理与天文学院教授克里斯托弗康瑟利斯(Christopher Conselice)对《财经》记者说。 几乎没有人否认,暗能量对于整个宇宙学乃至物理学而言,都不啻是一场革命。1979年诺贝尔物理学奖得主斯蒂芬温伯格(Steven Weinberg)曾明确表示,“如果不解决暗能量这个‘路障’,我们就无法全面理解基础物理学。”著名华裔物理学家、1957年诺贝尔物理 可以选用超声波、仿生学、航天科技、克隆之类的。超声波的是我做的,我给你讲讲吧! 我们人类耳朵能听到的声波频率为20~20,000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。!超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5兆Hz之间,常用为3∽兆Hz(每秒振动1次为1Hz,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。 超声波具有如下特性: 1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。 2) 超声波可传递很强的能量。 3) 超声波会产生反射、干涉、叠加和共振现象。 4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。 特点: (一)超声波在传播时,方向性强,能量易于集中。 (二)超声波能在各种不同媒质中传播,且可传播足够远的距离。 (三)超声与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。(治疗) 超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。 差不多就这些,其他的应用再查查就可以了。不过,做这个还要注意剪切,不然不够做。祝你成功啦!! 好巧啊,我也在做小报,下面是资料 神七小知识 : 神七共有4大部分,气闸舱、轨道舱、返回舱(返回地球所用,抗大气层烧蚀)、推进舱(在太空中的主要动力来源,有大型太阳能电池板和火箭推进发动机,航天员不能进入此舱)。返回舱直径达米,是目前世界上可利用空间最大的飞船。 轨道舱位于飞船前段,通过舱口与后面的返回舱相通,外形呈圆柱形。是宇航员在太空飞行期间的生活舱、试验舱和货舱,比返回舱宽敞,可以安放大量实验仪器和生活物资,是航天员进行科学实验、生活起居的空间。神七卸下了轨道舱一部分载荷和实验设备,为气闸舱留下空间。 气闸舱位于返回舱的上方,与轨道舱连接。以后的对接也将依靠此舱段,这是神七与神六最大不同。航天员通过轨道舱爬出飞船,通知飞船内航天员将气闸舱内门密封。换上舱外航天服后,放尽气闸舱内气体后,打开气闸舱外门,即可太空漫步。 与俄罗斯“联盟”飞船不同,神舟飞船的轨道舱具有自己的太阳能电池阵列、导航和推进系统。与飞船分离后,轨道舱仍然可继续在轨工作半年以上,几乎相当于一个小型空间站。 此外,与俄美两国第一次太空行走不同,此次神舟7号飞船有三位乘员,三位乘员互相分工是很优化的一种做法。作为宇宙飞船,三名乘员也是目前的最大数字。 此次为神七准备的长征二号F火箭也有改进。其中重大的突破有三个:针对以往火箭上升震动较大进行了改进设计,改善了航天员乘坐火箭的舒适性;还在火箭关键部位安装遥测图像测量装置,可实时监视和记录火箭主要飞行动作。
天王星是太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。 天王星是由威廉·赫歇耳通过望远镜系统地搜寻,在1781年3月13日发现的,它是现代发现的第一颗行星。事实上,它曾经被观测到许多次,只不过当时被误认为是另一颗恒星(早在1690年John Flamsteed便已观测到它的存在,但当时却把它编为34 Tauri)。赫歇耳把它命名为"the Georgium Sidus(天竺葵)"(乔治亚行星)来纪念他的资助者,那个对美国人而言臭名昭著的英国国王:乔治三世;其他人却称天王星为“赫歇耳”。 由于其他行星的名字都取自希腊神话,因此为保持一致,由波德首先提出把它称为“乌拉诺斯(Uranus)”(天王星),但直到1850年才开始广泛使用。 只有一艘行星际探测器曾到过天王星,那是在1986年1月24日由旅行者2号完成的。 大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热。这其中的原因还不为人知。 而且它不是以大于90度的转轴角进行正向转动,就是以倾角小于90度进行逆向转动。问题是你要在某个地方画一条分界线,因为比如对金星是否是真的逆向转动(不是倾角接近180度的正向转动)就有一些争议。 天王星基本上是由岩石和各种各样的冰组成的,它仅含有15%的氢和一些氦(与大都由氢组成的木星和土星相比是较少的)。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相象。虽然天王星的内核不像木星和土星那样是由岩石组成的,但它们的物质分布却几乎是相同的。 天王星的大气层含有大约83%的氢,15%的氦和2%的甲烷。
请参考:邯郸学院中文学术期刊分类认定意见(自然科学部分)一类期刊:科学通报(中国科学院)、中国科学(中国科学院)二类期刊:1. 综合类:自然科学进展2. 数学类:数学学报、数学进展、数学年刊、应用数学学报、高校应用数学学报3. 物理学类:物理学报、高能物理与核物理、天文学报、半导体学报、金属学报4. 化学类:化学学报、高等学校化学学报、化工学报5. 生物类:植物生理与分子生物学学报、动物学报、遗传学报、生物化学与生物物理学报6. 地理类:地理学报、地理研究、地理科学7. 计算机技术类:计算机学报、软件学报、计算机研究与发展8. 电子、电工、自动化类:自动化学报、电子学报、电工技术学报9. 材料科学类:无机材料学报、中国稀土学报、材料研究学报10. 体育类:中国运动医学杂志三类期刊:1. 综合类:中山大学学报(自然科学版)、清华大学学报(自然科学版)、复旦学报(自然科学版)、武汉大学学报(理学版)、南京大学学报(自然科学版)、东北大学学报(自然科学版)、北京大学学报(自然科学版)、北京师范大学学报(自然科学版)2. 数学类:数学物理学报、应用概率统计、应用数学和力学、工程数学学报、数学研究与评论、系统科学与数学、计算数学3. 物理学类:中国激光、原子与分子物理学报、物理学进展、天文学进展、光学学报、计算物理、物理4. 化学类:分析化学、化学通报、应用化学、物理化学学报、无机化学学报、有机化学、高分子学报、分析试验室、色谱、硅酸盐学报、光谱学与光谱分析5. 生物类:昆虫学报、微生物学报、实验生物学报、生物工程学报、生态学报、水生生物学报6. 地理类:自然资源学报、经济地理、地理科学进展、资源科学、人文地理、中国人口、资源与环境、环境科学、自然灾害学报、地球学报7. 计算机技术类:小型微型计算机系统、计算机科学、计算机工程与应用、计算机应用研究8. 电子、电工、信息、自动化:电子与信息学报、信息与控制、电视技术、通信学报、电力系统自动化、电力电子技术9.材料科学类:功能材料、复合材料学报、人工晶体学报四类期刊:1. 上述一、二、三类学术期刊以外的中文核心期刊(须为专业学术、理论、技术性刊物,并以《中文核心期刊要目总览》2004年版为准,北京大学出版社)上发表的学术论文;2. 在部、省、自治区、直辖市所属重点本科院校学报上发表的学术论文。五类期刊:1. 在一般本科院校学报上发表的论文;2. 被收录在具有“ISBN”书号的国际专业会议论文集的学术论文。六类期刊:1. 在一般专业学术性期刊上发表的论文;2. 被收录在具有“ISBN”书号的国内专业会议论文集的学术论文。(社会科学部分)一类期刊:中国社会科学(中国社科院)二类期刊:1. 综合类:社会科学战线、文献(国家图书馆)、国外社会科学2. 哲学类:哲学研究(中国社科院哲学所)、马克思主义研究(中国科院马列主义所)、自然辩证法通讯(中国科学院)3. 社会学类:社会学研究(中国社科院社会学所)、统计研究、人口研究、中国人口科学(中国社科院人口所)、世界宗教研究(中国社科院宗教所)、民族研究4. 管理学类:中国行政管理、管理世界(国务院发展研究中心)、企业管理(中国企业管理学会、国家经贸委)5. 政治学类:政治学研究(中国社科院政治学所)、求是、世界经济与政治6. 法学类:法学研究(中国社科院法学研究所)7. 经济学:经济研究、经济学动态、世界经济(中国社科院世界经济与政治所)、中国工业经济8. 新闻、广播、电视、出版事业类:中国记者(新华社)、中国广播电视学刊(中国广播电视学会、广电部政策研究室)、编辑学报(中国科技期刊研究会)9. 图书、情报、档案学类:中国图书馆学报(中国图书馆学会)、大学图书馆学报(全国高校图书馆工作委员会)、图书情报工作、档案学通讯10. 科学研究类:科学学研究、自然科学史研究11. 教育学、心理学类:教育研究(中央教育科研所)、心理学报(中国心理学会、中科院心理研究所)、课程·教材·教法12. 体育类:体育科学(中国体育科学学会)、中国体育科技(国家体委体育科研所)13. 语言学类:中国语文(中国社科院语言所)、语言文字应用14. 文学类:文艺研究、文学评论、文学遗产15. 外国语类:外语教学与研究(北京外国语大学语言所)、中国翻译(中国外文局编译研究中心)16. 艺术(含作品)类:中国音乐、音乐研究(人民音乐出版社)、美术(中国美术家协会理论栏)、美术研究、装饰17. 历史、考古类:历史研究(中国社会科学院)、近代史研究(中国社科院近代史所)、世界历史(世界历史杂志社)、中国史研究(中国社科院历史所)、考古(中国社科院考古所)18. 党政管理类:中国行政管理、求是(中共中央)三类期刊:1. 综合类:北京大学学报(哲学社会科学版)、中国人民大学学报、复旦学报(社会科学版)、南开学报(哲学社会科学版)、清华大学学报(哲学社会科学版)、南京大学学报(哲学、人文科学、社会科学)、武汉大学学报(社会科学版)、学术交流(黑龙江省社会科学界联合会)、学术月刊、文史哲2. 哲学类:自然辩证法研究(中国自然辩证法研究会)、科学技术与辩证法、毛泽东思想研究3. 社会学类:中国统计、中国人才、人口与经济、人口与计划生育、世界民族4. 管理学类: 领导科学、中外管理、管理科学学报5. 政治学类:社会主义研究(教育部委托华中师大)、当代世界社会主义(中共编译局)、现代国际关系(中国现代国际关系所)、青年研究6. 法学类:中国法学(中国法学会)、中外法学(北京大学)、政法论坛(中国政法大学)7. 经济学类:财政研究(中国财政学会)、统计研究、农业经济问题(中国农业经济学会、中国农科院经济所)、国际贸易问题、会计研究(中国会计学会、中国成本会计)、税务研究(中国税务学会)、审计研究(中国审计学会)、金融研究(金融研究杂志社)、宏观经济管理(国家计委)8. 新闻、广播、电视、出版事业类:中国出版(国家新闻出版署)、编辑学刊(上海编辑学会)、现代传播、中国电化教育(中央电教馆)、电化教育研究9. 图书、情报、档案学类:图书馆杂志、情报学报(中国科学技术情报学会)、中国科技期刊研究、档案学研究(中国档案学会)10. 科学研究类:中国软科学、科学学与科学技术管理、科研管理11. 教育学、心理学类:高等教育研究(武汉,中国高等教育学研究会,华中理工大学)、中国高教研究(教育部中国高教学会)、教育理论与实践(山西省教科所)、中国教育学刊(教育部中国教育学会)、教育评论(福建教科所)、心理科学(中国心理学会)、学科教育、学前教育研究、中国特殊教育12. 体育类:北京体育大学学报、天津体育学院学报、体育学刊、上海体育学院学报、体育与科学13. 语言学类:语言研究、语文研究、古汉语研究、汉语学习14. 文学类:文艺理论研究、外国文学评论、文艺理论与批评、中国现代文学研究丛刊、外国文学研究、中国文化研究(北京语言大学)15. 外国语类:外国语、外语与外语教学(大连外语大学)、现代外语16. 艺术(含作品)类:人民音乐、中央音乐学院学报、舞蹈(中国舞蹈家协会)、美术观察、中国书法(中国书法家协会理论栏)、中国摄影17. 历史、考古类:史学理论研究、史学史研究、中国经济史研究、抗日战争研究、中国史研究动态、文物、旅游学刊(中国旅游学院、中国旅游局)、中共党史研究、史学月刊、考古与文物18. 党政管理类:高校理论战线(教育部)、财政研究(中国财政学会)、统计研究、会计研究(中国会计学会、中国成本会计)、税务研究(中国税务学会)、审计研究(中国审计学会)、科技进步与对策四类期刊:1. 上述一、二、三类学术期刊以外的中文核心期刊(须为专业学术、理论性刊物,并以《中文核心期刊要目总览》2004年版为准,北京大学出版社)上发表的学术论文;2. 在部、省、自治区、直辖市所属重点本科院校学报上发表的学术论文。五类期刊:1. 在一般本科院校学报上发表的论文;2. 被收录在具有“ISBN”书号的国际专业会议论文集的学术论文。六类期刊:1. 在一般专业学术性期刊上发表的论文;2. 被收录在具有“ISBN”书号的国内专业会议论文集的学术论文。
天王星(英文:Uranus,拉丁文:Uranum,符号:♅或⛢),为太阳系八大行星之一,是太阳系由内向外的第七颗行星(天文单位),其体积在太阳系中排名第三(比海王星大),质量排名第四(小于海王星),几乎横躺着围绕太阳公转(封面为旅行者二号飞跃天王星最近时拍摄的照片。这是第一颗使用望远镜发现的行星。威廉·赫歇尔在1781年3月13日于索美塞特巴恩镇新国王街19号的自宅庭院中观察到这颗行星。天王星和海王星的内部和大气构成和更巨大的气态巨行星(木星、土星)不同,天文学家设立了冰巨星分类来定义它们。天王星大气的主要成分是氢、氦、甲烷和氘(重氢)。据推测,其内部可能含有丰富的重元素。地幔由甲烷和氨的冰组成,可能含有水。内核由冰和岩石组成。天王星是太阳系内大气层最冷的行星,最低温度为49K(-224℃)。中文名天王星外文名英语:Uranus 希腊语:Ουρανός 俄语:уран分类行星、远日行星、冰巨星发现者威廉·赫歇尔发现时间1781年3月13日快速导航星体特性外围组成星体运动近代事件科学研究探索发现发现天王星的英文名称Uranus来自古希腊神话中的天空之神乌拉诺斯(Οὐρανός),是克洛诺斯的父亲,宙斯的祖父。与在古代就为人们所知的五颗行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可见的,但由于亮度较暗、绕行速度缓慢并且由于当时望远镜观测能力不足,被古代的观测者认定为是一颗恒星。天王星在被发现是行星之前,已经被观测了很多次,但都把它当作恒星看待。最早的纪录可以追溯至1690年约翰·佛兰斯蒂德在星表中将他编为金牛座34,并且至少观测了6次。法国天文学家Pierre Lemonnier在1750至1769年也至少观测了12次,包括一次连续四夜的观测。威廉·赫歇尔在1781年3月13日于他位于索美塞特巴恩镇新国王街19号自宅的庭院中观察到这颗行星(赫歇尔天文博物馆),但在1781年4月26日最早的报告中他称之为彗星。赫歇尔用他自己设计的望远镜“对这颗恒星做了一系列视差的观察”。他在他的学报上的记录着:“在与金牛座ζ成90°的位置……有一个星云样的星或者是一颗彗星。”在3月17日,他注记着:“我找到一颗彗星或星云状的星,并且由他的位置变化发现是一颗彗星。”当他将发现提交给皇家学会时,虽然含蓄的认为比较像行星,但仍然声称是发现了彗星:威廉·赫歇尔,天王星的发现者"The power I had on when I first saw the comet was 227. From experience I know that the diameters of the fixed stars are not proportionally magnified with higher powers,as planets are; therefore I now put the powers at 460 and 932, and found that the diameter of the comet increased in proportion to the power, as it ought to be, on the supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustre and distinctness which from many thousand observations I knew they would retain. The sequel has shown that my surmises were well-founded, this proving to be the Comet we have lately observed."(“我第一次看到这颗彗星时的能量是227。从经验中我知道,固定恒星的直径并没有像行星那样按比例放大。所以我现在把权力在460年和932年,发现彗星的直径成比例增加的力量,应该是,假设的不是一个固定的恒星,而恒星的直径相比,我不是在相同的比例增加。此外,由于彗星被放大得比它的光线所能接受的大得多,它在这些巨大的力量作用下,显得模糊不清,模糊不清,而星星却保留着我从成千上万次观察中所知道的那种光泽和清晰。续集表明我的猜测是有根据的,这证明是我们最近观测到的彗星。”)赫歇尔因为他的发现被通知成为皇家天文学家,并且语无伦次地回复说:“我不知该如何称呼它,它在接近圆形的轨道上移动很像一颗行星,而彗星是在很扁的椭圆轨道上移动。我也没有看见彗发或彗尾。”天王星图片(来自旅行者二号飞跃前)当赫歇尔继续谨慎的以彗星描述他的新对象,其他的天文学家已经开始做不同的怀疑。俄国天文学家Anders Johan Lexell估计它至太阳的距离是地球至太阳的18倍,而没有彗星曾在近日点四倍于地球至太阳距离之外被观测到。柏林天文学家约翰·波得描述赫歇尔的发现像是“在土星轨道之外的圆形轨道上移动的恒星,可以被视为迄今仍未知的像行星的天体”。波得断定这个以圆轨道运行的天体比彗星更像是一颗行星。这个天体很快便被接受是一颗行星。在1783年,法国科学家拉普拉斯证实赫歇尔发现的是一颗行星。赫歇尔本人也向皇家天文学会的主席约翰·班克斯承认这个事实:“经由欧洲最杰出的天文学家观察,显示这颗新的星星我很荣誉的在1781年3月指认出的,是太阳系内主要的行星之一。”命名马斯基林曾这样的问赫歇尔:“作为天文学世界的恩宠(原文如此),为您的行星取个名字,这也完全是为了您所爱的,并且也是我们迫切期望您为您的发现所做的。”回应马基斯林的请求,赫歇尔决定命名为“乔治之星(Georgium Sidus)”或“乔治三世”以纪念他的新赞助人——乔治三世。他在给约瑟夫·贝克的信件中解释道:天王星“In the fabulous ages of ancient times the appellations of Mercury, Venus, Mars, Jupiter and Saturn were given to the Planets, as being the names of their principal heroes and divinities. In the present more philosophical era it would hardly be allowable to have recourse to the same method and call it Juno, Pallas, Apollo or Minerva, for a name to our new heavenly body. The first consideration of any particular event, or remarkable incident, seems to be its chronology: if in any future age it should be asked, when this last-found Planet was discovered? It would be a very satisfactory answer to say, 'In the reign of King George the Third.”天文学家Jerôme Lalande建议将这颗行星称为赫歇尔以尊崇它的发现者。但是,波得赞成用希腊神话的乌拉诺斯,译成拉丁文的意思是天空之神,中文则称为天王星。波得的论点是农神(土星)是宙斯(木星)的父亲,新的行星则应该取名为农神的父亲。天王星的名称最早是在赫歇尔过世一年之后的1823年才出现于官方文件中。乔治三世或“乔治之星”的名称在之后仍经常被使用(只在英国使用),直到1850年,HM航海历才换用天王星的名称。天王星的名称是行星中唯一取自希腊神话而非罗马神话的,天王星的形容词(Uranian)被铀的发现者Martin Klaproth用来命名在1789年新发现的元素。Uranus的重音在第一个音节,因为倒数第二个音a是短音(ūrănŭs)并且是开放的音节。这样的音节在拉丁文中从未被强调过,因此在传统上名字的正确发音是来自英语的[ˈjʊ.rə.nəs]。传统上不正确的发音,重音落在第二音节并且将a发成长音是很普通的。天王星的天文学符号是Astronomical symbol for Uranus,它是火星和太阳符号的综合,因为天王星是希腊神话的天空之神,被认为是由太阳和火星联合的力量所控制的。他在占星学上的符号,是Lalande在1784年建议的。在给赫歇尔的一封信中,Lalande描述他是“您的名字首次战胜地球的符号”("a globe surmounted by the first letter of your name")。在东亚,也都翻译成天王星(sky king star)。拜访天王星旅行者2号在1986年1月24日最接近天王星,并随即发现了10个之前未知的天然卫星。另外太空船亦探测了天王星由其自转轴倾斜°缘故而独特的大气层,并观察了他的行星环系统。在这首次的略过之中,最接近天王星时只距离天王星的云层顶部81500公里(50600英里)而已。天王星的即时照片 旅行者二号拍摄天王星是太阳系里第三大的行星,它于距离太阳约28亿公里(17亿英里)的距离围绕太阳公转。其公转周期是84年,自转周期则是17小时14分钟。天王星的自转独特在于它实际上是倾倒在其轨道滚动,一般认为这个不寻常的位置是由于在太阳系的形成早期曾与一颗行星大小的星体碰撞过的原故。由于它的奇怪定位,使它的两极会分别接受长达42年的白昼或晚上,所以科学家们都不知道会在天王星上发现到些什么。旅行者2号发现了其中一样因天王星的倾斜位置而对其倾斜了60度的磁场的影响,就是其磁尾因天王星的转动而被扭曲成为了一个螺旋形,出现在天王星的后方。不过其实在旅行者到访之前,人们对天王星拥有磁场并不知情。天王星的辐射带被发现如土星的一样密集。辐射带里辐射的密集程度,会令光线把任何困在卫星或环里冰面上的甲烷迅速地(在100000年以内)变暗。这样解释了为什么天王星的卫星及环大部份都以灰色为主。在日光直射的一极检测到一些高层次的雾,发现这些雾帮助散播大量的紫外光,这个现象称之为“日辉”。其平均温度是60K(-350°F)。令人惊讶的是,即使是被照射的一极和黑暗的一极,在整颗行星上的云顶气温几乎一致。在五颗最大的天然卫星中运行轨迹最靠近天王星的天卫五,展示出它是太阳系中最奇怪的星体之一。当旅行者2号飞过时,从拍摄回来的详细照片中看到其表面上有一些深达20公里(12英里)的峡谷、隆起的断层和新旧年龄混合的地表。有理论指天卫五可能是把早期一些猛烈撞击后破裂的物质重新组合而成。太空船同时亦观测了九个已知的环,显示出天王星的环与木星和土星的环截然不同。整个星环系统相对地较新,并非与天王星形成时一起形成。星环里的组成粒子有可能是一颗因高速撞击或被潮汐力撕碎的卫星碎片而形成。天王星环星体特性基本参数轨道半径(天文单位)轨道偏心率轨道对黄道斜角(°)公转周期(年)展开全部轨道参数(历元 J2000)远日点距离:3,004,419,704km()近日点距离:2,748,938,461km()轨道半长轴:2,876,679,082km()轨道离心率:公转周期:个地球日(年)自转周期:17时14分24秒自转方向:自东向西逃逸速度:会合周期:日平均公转速度:平均近点角:°轨道倾角:°(°对太阳的赤道)升交点赤经:°近日点辐角:°卫星数:27物理参数赤道半径:25,559±4km(地球)两极半径:24,973±20km(地球)扁率:表面积:×109km2(个地球表面积)体积:×1013km3;(个地球体积)质量:±13×1025公斤(个地球)GM=5,793,939±13公里3/秒2;平均密度:;赤道表面重力加速度:;()逃逸速度:行星自转周期:地球日(17时14分24秒)赤道旋转速率:(9,320km/h)轴倾斜:°北极赤经:17h9min15s,°赤纬:°反照率:(bond),(geom)表面温度:最小:49K(℃)平均:53K(℃)最高:57K(℃)星等:~角度尺寸:"~"形容用词:Uranian大气组成83±3%氢分子(H2)15±3%氦甲烷(~)重氢化合物(HD)冰氨水氨硫化氢(NH4SH)甲烷(CH4)
凡获得国内统一刊号的期刊,均为正式出版物。新闻出版总署从未就学术水平的高低为这些期刊划分过级别,仅从出版管理的角度,按照期刊主管单位的不同将期刊分成中央期刊和地方期刊,这样划分是为了按照期刊主管单位的不同对期刊实施有效的行政管理。有的期刊在封面上刊载“国家一级期刊”等字样,不是新闻出版总署组织评选出来的, 并非政府行为。
信息检索是学习如何通过网络来找到你想要的。如文献检索一般都在“万方数据库”、“CNKI数据库”、“国家知识产权局”等各个网站搜索,要想知道有关检索的一些问题,你可以看看这个网站作为参考。
罗马神话中,冥王星(希腊人称冥界的首领为Hades哈迪斯)是冥界的首领。这颗行星得到这个名字(而不采纳其他的建议)是由于他离太阳太远以致于一直沉默在无尽的黑暗之中,凑巧的是冥王星(pluto)开头的两字母是发现者Percival Lowell是缩写。 冥王星是在1930年由于一个幸运的巧合而被发现的。一个后来被发现错误的计算“断言”:基于天王星 与海王星的运行研究,在海王星后还有一颗行星。美国亚利桑那州的Lowell天文台的Clyde W. Tombaugh由于不知道这个计算错误,对太阳系进行了一次非常仔细的观察,然而正因为这样,发现了冥王星。 发现了冥王星后,人们很快发现冥王星太小及与其它行星运行轨道有差异。对未知行星(Planet X)的研究还在继续,但没发现任何东西。如果采用了旅行者2号飞船计算出的海王星的质量,那么另一个质量差异就消失了,也就不会有第十颗行星了。 冥王星是唯一一颗还没有太空飞行器访问过的行星。甚至连哈勃太空望远镜也只能观察到它表面上的大致容貌。 很幸运,冥王星有一颗卫星,冥卫一。也是靠着好运气,它才能被发现。这是在1978年,它在向着太阳系内运行时,刚好运行到轨道的边缘时被发现的。所以可能通过冥卫一观察许多冥王星的运行,反之亦然。通过精密计算什么物体什么部分在什么时候被覆盖,以及观察光亮曲线,天文学家能够绘出两个半球光亮区域与黑暗区域的大致地图。 冥王星的半径还不很清楚,JPL(Jet Propulsion Laboratory,喷气推进实验室)的数值1137千米被认为有±8的误差,几乎近1%。 尽管冥王星和冥卫一的总质量知道得很清楚(这可以通过对冥卫一运行轨道的周期及半径精确测量和开普勒第三定律而确定),但是冥王星和冥卫一分别的质量却很难确定。这是因为要分别求出质量,必须测得更为精确的有关冥王星与冥卫一系统运行时的质心才能确定测量出,但是它们太小而且离我们实在太远,甚至哈勃太空望远镜对此也无能为力。这两颗星质量比可能在到之间。更多的观察正在进行,但是要得到真正精密的数据,只有送一艘太空飞行器去那里。 冥王星是太阳系中第二个反差极大的天体(次于土卫八)。探索这些差异的起因是计划中的冥王星特快计划中首要目标之一。 冥王星的轨道十分地反常,有时候比海王星离太阳更近(从1979年1月开始持续到1999年2月)。 冥王星与海王星的共同运动比为3:2,即冥王星的公转周期刚好是海王星的倍。它的轨道交角也远离于其他行星。因此尽管冥王星的轨道好像要穿越海王星的轨道,实际上并没有。所以他们永远也不会碰撞(这里有十分细致的解释)。 就像天王星那样,冥王星的赤道面与轨道面几乎成直角。 冥王星的表面温度知道很不很清楚,但大概在35到45K(-238到-228℃)之间。 冥王星的成份还不知道,但它的密度(大约2克/立方厘米)表示:冥王星可能像海卫一一样是由70%岩石和30%冰水混合而成的。地表上光亮的部分可能覆盖着一些固体氮以及少量的固体甲烷和一氧化碳,冥王星表面的黑暗部分的组成还不知道但可能是一些基本的有机物质或是由宇宙射线引发的光化学反应。 有关冥王星的大气层的情况知道得还很少,但可能主要由氮和少量的一氧化碳及甲烷组成。大气极其稀薄,地面压强只有少量微帕。冥王星的大气层可能只有在冥王星靠近近日点时才是气体;在其余的冥王星的年份中,大气层的气体凝结成固体。靠近近日点时一部分的大气可能散逸到宇宙中去,甚至可能被吸引到冥卫一上去。冥王星特快任务的计划人想在大气滑凝固时到达冥王星。 冥王星和海卫一的不寻常的运行轨道以及相似的体积使人们感到在它们俩之间存在着某种历史性的关系。有人曾认为冥王星过去是海王星的一颗卫星,但是现在认为并不是这样。一个更为普遍的学说认为海卫一原本与冥王星一样,自由地运行在环绕太阳的独立轨道上,后来被海王星吸引过去了。海卫一,冥王星和冥卫一可能是一大类相似物体中还存在的成员,其他一些都被排斥进了Oort奥尔特云(Kuiper柯伊伯带外的物质)。冥卫一可能是像地球与月球一样,是冥王星与另外一个天体碰撞的产物。 冥王星可以被非专业望远镜观察到,但是这是不容易的。Mike Harvey的行星天象图可以显示最近冥王星在天空中的方位(以及其他行星),但是还得靠更为细致的天象图以及几个月的仔细观察才能真正地找到冥王星。由行星程序如“灿烂星河”可以绘制准确的天象图。 天王星是由威廉·赫歇耳通过望远镜系统地搜寻,在1781年3月13日发现的,它是现代发现的第一颗行星。事实上,它曾经被观测到许多次,只不过当时被误认为是另一颗恒星(早在1690年John Flamsteed便已观测到它的存在,但当时却把它编为34 Tauri)。赫歇耳把它命名为"the Georgium Sidus(天竺葵)"(乔治亚行星)来纪念他的资助者,那个对美国人而言臭名昭著的英国国王:乔治三世;其他人却称天王星为“赫歇耳”。 由于其他行星的名字都取自希腊神话,因此为保持一致,由波德首先提出把它称为“乌拉诺斯(Uranus)”(天王星),但直到1850年才开始广泛使用。 只有一艘行星际探测器曾到过天王星,那是在1986年1月24日由旅行者2号完成的。 大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热。这其中的原因还不为人知。 而且它不是以大于90度的转轴角进行正向转动,就是以倾角小于90度进行逆向转动。问题是你要在某个地方画一条分界线,因为比如对金星是否是真的逆向转动(不是倾角接近180度的正向转动)就有一些争议。 天王星基本上是由岩石和各种各样的冰组成的,它仅含有15%的氢和一些氦(与大都由氢组成的木星和土星相比是较少的)。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相象。虽然天王星的内核不像木星和土星那样是由岩石组成的,但它们的物质分布却几乎是相同的。
概况 根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为大行星。太阳系中有七颗卫星比冥王星大(月球、木卫一、木卫二、木卫三、木卫四、土卫六和海卫一)。 公转轨道:离太阳平均距离5,913,520,000千米(天文单位) 直径:2274千米 质量:千克 罗马神话中,冥王星(希腊人称冥界的首领为Hades哈迪斯)是冥界的首领。这颗行星得到这个名字(而不采纳其他的建议)是由于他离太阳太远以致于一直沉默在无尽的黑暗之中,凑巧的是冥王星(pluto)开头的两字母是发现者Percival Lowell是缩写。 冥王星是在1930年由于一个幸运的巧合而被发现的。一个后来被发现错误的计算“断言”:基于天王星 与海王星的运行研究,在海王星后还有一颗行星。美国亚利桑那州的Lowell天文台的Clyde W. Tombaugh由于不知道这个计算错误,对太阳系进行了一次非常仔细的观察,然而正因为这样,发现了冥王星。 发现了冥王星后,人们很快发现冥王星太小及与其它行星运行轨道有差异。对未知行星(Planet X)的研究还在继续,但没发现任何东西。如果采用了旅行者2号飞船计算出的海王星的质量,那么另一个质量差异就消失了,也就不会有第十颗行星了。 冥王星是唯一一颗还没有太空飞行器访问过的行星。甚至连哈勃太空望远镜也只能观察到它表面上的大致容貌。 很幸运,冥王星有一颗卫星,冥卫一。也是靠着好运气,它才能被发现。这是在1978年,它在向着太阳系内运行时,刚好运行到轨道的边缘时被发现的。所以可能通过冥卫一观察许多冥王星的运行,反之亦然。通过精密计算什么物体什么部分在什么时候被覆盖,以及观察光亮曲线,天文学家能够绘出两个半球光亮区域与黑暗区域的大致地图。 冥王星的半径还不很清楚,JPL(Jet Propulsion Laboratory,喷气推进实验室)的数值1137千米被认为有±8的误差,几乎近1%。 尽管冥王星和冥卫一的总质量知道得很清楚(这可以通过对冥卫一运行轨道的周期及半径精确测量和开普勒第三定律而确定),但是冥王星和冥卫一分别的质量却很难确定。这是因为要分别求出质量,必须测得更为精确的有关冥王星与冥卫一系统运行时的质心才能确定测量出,但是它们太小而且离我们实在太远,甚至哈勃太空望远镜对此也无能为力。这两颗星质量比可能在到之间。更多的观察正在进行,但是要得到真正精密的数据,只有送一艘太空飞行器去那里。 冥王星是太阳系中第二个反差极大的天体(次于土卫八)。探索这些差异的起因是计划中的冥王星特快计划中首要目标之一。 冥王星的轨道十分地反常,有时候比海王星离太阳更近(从1979年1月开始持续到1999年2月)。 冥王星与海王星的共同运动比为3:2,即冥王星的公转周期刚好是海王星的倍。它的轨道交角也远离于其他行星。因此尽管冥王星的轨道好像要穿越海王星的轨道,实际上并没有。所以他们永远也不会碰撞(这里有十分细致的解释)。 就像天王星那样,冥王星的赤道面与轨道面几乎成直角。 冥王星的表面温度知道很不很清楚,但大概在35到45K(-238到-228℃)之间。 冥王星的成份还不知道,但它的密度(大约2克/立方厘米)表示:冥王星可能像海卫一一样是由70%岩石和30%冰水混合而成的。地表上光亮的部分可能覆盖着一些固体氮以及少量的固体甲烷和一氧化碳,冥王星表面的黑暗部分的组成还不知道但可能是一些基本的有机物质或是由宇宙射线引发的光化学反应。 有关冥王星的大气层的情况知道得还很少,但可能主要由氮和少量的一氧化碳及甲烷组成。大气极其稀薄,地面压强只有少量微帕。冥王星的大气层可能只有在冥王星靠近近日点时才是气体;在其余的冥王星的年份中,大气层的气体凝结成固体。靠近近日点时一部分的大气可能散逸到宇宙中去,甚至可能被吸引到冥卫一上去。冥王星特快任务的计划人想在大气滑凝固时到达冥王星。 冥王星和海卫一的不寻常的运行轨道以及相似的体积使人们感到在它们俩之间存在着某种历史性的关系。有人曾认为冥王星过去是海王星的一颗卫星,但是现在认为并不是这样。一个更为普遍的学说认为海卫一原本与冥王星一样,自由地运行在环绕太阳的独立轨道上,后来被海王星吸引过去了。海卫一,冥王星和冥卫一可能是一大类相似物体中还存在的成员,其他一些都被排斥进了Oort奥尔特云(Kuiper柯伊伯带外的物质)。冥卫一可能是像地球与月球一样,是冥王星与另外一个天体碰撞的产物。 冥王星可以被非专业望远镜观察到,但是这是不容易的。Mike Harvey的行星天象图可以显示最近冥王星在天空中的方位(以及其他行星),但是还得靠更为细致的天象图以及几个月的仔细观察才能真正地找到冥王星。由行星程序如“灿烂星河”可以绘制准确的天象图。 2006年8月24日,该行星经布拉格会议讨论,从九大行星行列中排除,正式降格为矮行星。 关于冥王星的行星资格的争论 冥王星刚被发现之时,它的体积被认为有地球的数倍之大。很快,冥王星也作为太阳系第九大行星被写入教科书。但是随着时间的推移和天文观测仪器的不断升级,人们越来越发现当时的估计是一个重大“失误”,因为它的体积要远远小于当初的估计。此外,冥王星(pluto)的行星身份也一直以来成了天文学家们争论的焦点,这也是因为一直以来对行星没有一个具体清楚的定义。尤其,自1992年首次发现“柯伊伯带”(Kuiper Belt)以来,更多关于天文发现加剧了人们其行星资格的争论。 新发现重新引发争论 进入21世纪,天文望远镜技术的改进,使人们能够进一步对海王星外天体(trans-Neptunian objects)有更深了解。2002年,被命名为50000 Quaoar(夸欧尔)的小行星被发现,这个新发现的小行星的直径(1280公里)要长于冥王星的直径的一半。2004年,被命名为90377 Sedna(塞德娜)的小行星的最大直径也达到了1800公里,而冥王星的直径也只不过2320公里。 2005年7月9日,又一颗新发现的的海王星外天体被宣布正式命名为厄里斯(Eris)。根据厄里斯的亮度和反照率推断,它要比冥王星略大。这是1846年发现海王星之后太阳系中所发现的最大天体。尽管当初并没有官方的共识,它的发现者和众多媒体起初都将之称为“第十大行星”。也有天文学家认为厄里斯的发现为重新考虑冥王星的行星地位提供了有力佐证。 就连冥王星的显著特征——它的卫星和大气,也并不是独一无二的,海王星外天体带中的一些小行星也有自己的卫星。而且厄里斯的天体光谱分析也显示它和冥王星有着相似的地表,此外厄里斯也有一个较大的卫星戴丝诺米娅(Dysnomia)。 国际天文学联合会(IAU)的决议 ——开除冥王星行星“星籍” 根据国际天文学联合会2006年8月24日通过的决议,被称为行星(planet)的天体要符合三个主要条件。 1.该天体须位于围绕太阳的轨道之上 2.该天体须有足够大的质量来克服固体应力以达到流体静力平衡(hydrostatic equilibrium)的形状(近于球形) 3.该天体须有足够的引力清空其轨道附近区域的天体 而冥王星则不符合上述第三条行星标准。 国际天文学联合会进一步决议通过冥王星应该归入矮行星(dwarf planet)之列,而且可以作为尚未命名的一类海王星外天体的原形。在此决议之前,人们也提出了不同的行星方案,其中一些甚至提到除了冥王星外也取消地球水星的行星资格,而另外一些则提议将一些小行星也纳入行星之列。 2006年1月“新地平线”号发射,预计2015年到达冥王星进行观测 九大行星中离太阳最远、质量最小的要算冥王星了。它在远离太阳59亿千米的寒冷阴暗的太空中蹒跚前行,这情形和罗马神话中住在阴森森的地下宫殿里的冥王普鲁托非常相似。因此,人们称其为普鲁托(Pluto),在天文学中是普鲁托英文名字前两个字母,又是对冥王星发现有推动之功的美国天文学家洛韦尔 (Percival Lowell)姓名的缩写。 冥王星是最晚发现的一颗行星,和天王星、海王星的发现相比,冥王星的发现可算得 上“好事多磨”。冥王星的亮度很弱,只有15等,即使在大望远镜拍摄的照片上,它和普通的恒星也没有什么差别,要想在几十万颗星星中找到它,真好比是大海捞针。 在寻找冥王星的工作中,天文爱好者出身的美国天文学家洛韦尔详细计算了这颗未知行星的位置,用望远镜仔细寻找,付出了十几年的心血。直到1916年11月16日,他突然去世。 1925年,洛韦尔的兄弟捐献了一架口径厘米的大视场照相望远镜,性能非常好,为继续搜寻新行星提供了优越的条件。 1929年,洛韦尔天文台台长邀请汤博(Clyde William Tombaugh)加入未知行星的搜索行列。他们一个一个天区地搜索,拍摄了 大量底片,并对每张底片进行细心地检查,工作艰苦、乏味。 1930年1月21日,汤博终于在双子星座的底片中发现了这颗新行星。 质量:地球质量 半径:1350千米 周期:90465日 轨道半长径:天文单位 轨道偏心率: 轨道倾角:° 冥地距离:5900000000km 奇特的轨道 冥王星在发现之初曾被认为是一颗位于海王星轨道外的行星,但后来的事实证明并非完全如此。譬如,在1979年1月21日~1999年3月14日这段时间,冥王星就比海王星更靠近太阳。这是由于冥王星轨道的偏心率、轨道面对黄道面的倾角都比其它行星大。冥王星在近日点附近时比海王星离太阳还近,这时海王星成了离太阳最远的行星。每隔一段时间,冥王星和海王星会彼此接近,在黄道投影图上两颗行星的轨道交叉。但不必担心它们会碰撞,因为它们的轨道平面并不重合,即使在交叉点附近,它们之间的距离仍然是很大的。它们会像运行于立体交叉公路上的车辆一样,各自飞驰而过。 卫星的发现 1978年7月,美国海军天文台的克里斯蒂在研究冥王星的照片时,偶然发现冥王星小小的圆面略有拉长。他把1970年以来所有的冥王星照片都找出来,结果发现这一现象是有规律地出现的,于是他断定冥王星有一颗卫星。由于冥王星离我们实在太远了,以致在大望远镜里也不能把冥王星和它的卫星分开。这好比气象站的风速计,一根横杆连着两个圆球,在疾风中旋转。从远处看去,两个圆球融成一体,只能察觉出它时圆时扁的变化。冥王星的卫星被命名为查龙(Charon)。在希腊神话中查龙是普鲁托的一个役卒,专在冥海上渡亡灵。查龙的公转周期与冥王星的自转周期一样,都是日。 冥王星直径有多大 由于冥王星太暗太小,发现后很长时间不能确定它的大小。最早估计它的直径是6600千米,1949年改为10000千米。1950年,柯伊伯用新建的5米望远镜将其修正为6000千米,1965年又用冥王星掩暗星的方法定出直径的上限为5500千米。1977年发现冥王星表面是冰冻的甲烷,按其反照率测算,冥王星的直径缩小到2700米。1980年用夏威夷莫纳克亚山上的米红外望远镜测出的冥王星直径在2600~4000千米之间,查龙直径为2000千米。近年一些天文学家观测指出,冥王星的直径约为2400千米,比月球(3475千米)还小,而查龙直径为1180千米,它与冥王星直径之比是2:1,是九大行星中行星与卫星直径之比最大的。所以,有人说冥王星和它的卫星更像一个双行星系统。 未知数最多的行星 冥王星发现至今只有60多年,再加上又小又远,是目前大行星中面目最为模糊的一颗。20世纪70年代和80年代是太阳系航天探测的黄金时代,九大行星中已有8颗被行星际探测器近探过,只有冥王星是航天器未涉足的死角。在各种天文书刊中给出的行星参数表上,冥王星这一栏留下的空白最多,即使被列出数据,有不少也被打上问号,表示不准确。 除了一大串未知数外,人们对冥王星的身份也有怀疑。冥王星的直径、质量是行星中最小的,密度为每立方厘米~克,反照率为50%~60%,这同外行星的几颗大卫星很相似。冥卫星究竟是行星还是卫星?或是一颗大的小行星?然而,不管它是什么,作为太阳系遥远边界上的一个天体,它的神秘感对天文学家有很大的吸引力。相信不久的将来,随着探测技术的发展,冥王星将成为行星天文学的热门课题。 有冥外行星吗? 哥白尼提出日心说时,土星是太阳系的边界,后来随着天王星、海王星和冥王星的发现,太阳系边界一次次外延。然而从理论上说,太阳系的范围应比现在的九大行星的范围大干百倍,甚至上万倍。太阳系中是否还存在冥外行星?对此,天文学家做了十分浩繁和艰苦的工作。汤博在发现冥王星后的14年里,一直在用发现冥王星的方法寻找冥外行星。他用闪视比较仪仔细检查了362对底片(这些底片所覆盖的面积大约为全天的70%),从每张底片中寻找可能存在的新行星。他发现了大量新天体,却没有冥外行星。科学家认为冥外行星如果存在,势必会使飞近它的探测器受到摄动,其影响足可以在探测器的运行轨道中反映出来。然而旅行者号探测器在飞越过海王星和冥王星轨道之后,运行正常,没有提供一点点证明未知天体存在的蛛丝马迹。到底有没有冥外行星,目前还是一个待解之谜 冥王星在占星术里的意义 冥王星在星盘中也属于“超个人行星”。大约二面四十六年绕行黄道宫一周,约十四年至三十二年行一宫。冥王星是颗男性的、阳性的星。代表毁灭驱力或改革驱力,融合,暗中发展的事物,生殖、再生与堕落。它的本质是可塑造的、综合的。其性质是阴性的,阴暗的,湿冷的。在人物方面则代表独裁者、圣哲、心灵学者、大魔头等。 冥王星的图腾符号象征是第一个符号来自PL,以纪念Percival Lowell于西元一九三O年发展冥王星。或代表物质的十字架上顶着新月,其上悬着代表永无止境的圆圈。海王星的外围就是冥王星,它守护着天蝎座,旺势星尚未确定,在金牛座是失势,落陷星尚未确定。属于冥王星的字决是“变形”。它的影响如:掌管下界隐然看不见的一切事物,也影响个人传统观念,包括人类未知的世界,隐蔽的自我或潜意识中的自我、记得的事物、宇宙间精神的力量、创造的潜力、原始的欲望和冲动等。黑暗又坚持的冥王星,支配着观念、重复出现的印象,如印刷类的复制过程等。冥王星在星盘中的宫位,冥王星在星盘中的相位是你在生命中感到最复杂的领域,也是你必须独力解决的领域。 冥王星对身体也有相对感应的部位,如排泄及新陈代谢系统、脑下垂体、畸形生长如疣、肿瘤、胎记、黑痣等。所代表的疾病如难解的疾病、排泄器官疾病、性病、生殖腺问题、细胞组合、再生机能及免疫系统障碍、性冲动、凶残兽性。 冥王星正面特征有:坚决认真的、精力旺盛的、心灵的、有治疗功用的、热情的、神秘的、足智多谋的、强有力的、有勇气的、隐秘的。而负面特征如:紧张的、无情的、变化的、重生的、性欲的、贪婪的、侵略的、固执的、不善交际的、不合作的、强制的、怀恨的、讽刺的、极端的、妒嫉的、强迫的、操纵的。 新视野”完成机动后直奔冥王星 在对飞行路线略加调整之后,美国航空航天局的“新视野”探测器正在直奔遥远的冥王星系统的核心地带。美国东部夏令时9月25日下午4时04分,该探测器上的推力器点火工作了15分钟37秒,用不到1公斤的燃料使速度改变了米/秒。这次机动由设在约翰·霍普金斯大学应用物理实验室的新视野任务操作中心监控进行,是该探测器自2006年1月发射以来进行的第四次轨道修正,也是它今年2月加速飞过木星系统后的首次轨道修正。 任务团队将对这次机动的数据进行评估,以便确定“新视野”在2015年7月与冥王星交会之前是否还需要做进一步的机动。如不做这次机动,“新视野”将会在距冥王星约50万公里的地方飞过。机动的成功使得该探测器的飞行方向落在冥王星各颗卫星的轨道范围以内。 今后几个月,“新视野”项目各团队将面临一段繁忙的工作。它们将完成该探测器飞往冥王星途中要进行的首次“年检”。由于刚做完轨道修正机动和其它工作,首次年度检测要比随后的各次耗时略长一些。 在过去的5周里,项目团队采集了多普勒跟踪数据,以为轨道修正机动提供支持,并检查了探测器的各分系统。检测工作还将包括对几台科学仪器和分系统进行最终调试。 现在,冥王星已经不属于大行星了,因为比它大的还有好多