1.岩石成因探讨
自从Loiselle and Wones(1979)提出非造山、碱性、无水的A型花岗岩以来,对该类型花岗岩的研究一直受到国内外地质学家的高度关注。近年来对A型花岗岩的研究又取得了许多新的进展,从构造环境分为两种:非造山和造山后(Eby, 1990; Bonin,1990;洪大卫等,1995;王德滋等, 2002),洪大卫等(1995)把A型花岗岩分成AA型和PA型,并分别与非造山的板内环境和后造山的造山带构造环境相对应。目前对A 型花岗岩的识别标志像埃达克岩(adakite)一样越来越依赖于主元素、微量元素、同位素等地球化学多数能落入A 型花岗岩区为总体特征(Whalen,1987; Eby, 1990,1992;洪大卫等,1995; King et al.,1997;许保良等,1998;孙德有等,2005;苏玉平等, 2005;吴锁平等,2007);又从化学成分上分为碱性和准铝质甚至过铝质A型花岗岩(King et al., 1997; Eby,1990),但它们都受控于拉张环境,这是所有A 型花岗岩产生的共同机制,在造山带中的A型花岗岩主要形成于造山后伸展作用阶段,从而使A 型花岗岩成为判断造山作用结束时间的重要岩石学标志(Eby,1992;洪大卫等,1995; King et al.,1997;王德滋等,1995,2002)。
前人对小兴安岭东南地区出露的早中生代正长-碱长花岗岩已做过大量的岩石学、岩石化学、岩体成因等方面研究,认为是Ⅰ型或S型花岗岩,或与高分异I型花岗岩有关,形成于大陆内部张性断裂或造山后构造环境中(黑龙江省地质矿产局,1993;黑龙江省地调院齐齐哈尔分院,1997~2008)。对正长-碱长花岗岩岩石成因上的分歧,制约了对区域构造演化的深入认识,且以往只强调了碱性A型花岗岩的特征及其构造属性(孙德有等,2001、2004、2005; Wu at al,2002),而对铝质A型花岗岩的研究没有予以足够的重视,从而其形成的构造背景没有得到充分认识。
小兴安岭正长—碱长花岗岩岩石矿物组合以条纹长石、石英为主,少量铁质黑云母,无碱性暗色矿物和微细粒闪长质包体。岩石组合的NK/A(分子数比)大多数为~(平均为)>总体上>1,符合Whalen(1987)的划分碱性和偏碱性花岗岩的界限。在(Al2O3+CaO)/(TFeO+Na2O+K2O)-100(MgO+TFeO+TiO2)/SiO2图中大多数落入碱性岩区和高分异钙碱性岩区(图3-31),在A/CNK-A/NK图中均落入过铝质-偏铝质岩石区(图3-30)。岩石具高硅、富碱、富铝和低钙、镁的特点,与吉林张广才岭南端三道河晚三叠世铝质A型花岗岩完全一致(孙德有等,2005),而不含碱性暗色矿物区别于小兴安岭地区的典型碱性A型花岗岩。
岩石的稀土配分曲线呈轻稀土略微富集的、缓向右倾斜的右倾而重稀土较为平坦、铕亏损的“海鸥型”(图3-32a),与吉黑张广才岭—小兴安岭地区的铝质A 型碱长花岗岩稀土特征完全相似(孙德有等,2005),并与典型的碱性A 型花岗岩具轻、重稀土均较为平坦、前者略向右缓倾斜的、后者略上翘呈海鸥型(与球粒陨石Chondrite)相比有所差别(Whalen, 1987; Eby,1990、1992;Martin et al.,1994;洪大卫等,1995; King et al.,1997;赵广涛等,1997;范春方等,2000;刘昌实等,2003a、b;吴锁平等,2007)。
对于高硅的正长-碱长花岗岩需要用SiO2-TFeO/MgO图来有效区分A型与I、S 型花岗岩(Whalen,1987; Eby, 1990;洪大卫,1995; King et al.,1997;卢成忠等,2006;吴锁平等, 2007)。在TFeO/MgO图和Na2O-K2O图(图3-33)中,大多数岩石落入A型花岗岩区。
正长-碱长花岗岩在10000 ×Ga/Al-(Zr+Nb+Ce+Y)图(图3-34)中,正长-碱长花岗岩落入A型花岗岩区。岩石在10000 ×Ga/Al-(Na2O +K2O)图、10000 ×Ga/Al-(Na2O +K2O)/CaO图、10000×Ga/Al-K2O/MgO图、10000 ×Ga/Al-TFeO/MgO图、10000 ×Ga/Al-Zr、Nb、Ce、Y图(图3-35)等成因类型判别图解中,正长-碱长花岗岩岩石样品点绝大多数落入A型花岗岩区。
图3-33 正长-碱长-碱性花岗岩Na2O-K2O图及TFeO/MgO-SiO2图
图3-34 岩石10000×Ga/Al-(Zr+Nb+Ce+Y)图
当SiO2>72%的铝质A型花岗岩与高度分异的I型、S型花岗岩之间有许多相似之处,因此进一步需要将它们区分开来(Eby,1990;吴锁平等,2007)。
(1)正长-碱长花岗岩岩石的主要氧化物SiO2、Al2O3、Fe2O3、FeO、MgO、Na2O、K2O等含量以及平均值(表3-15、表3-18),与世界A型花岗岩平均值最为接近,与澳大利亚高分异的I型Ackley岩体、S型Scandy Cape岩体间存在较大差异(Whalen,1987; King et al.,1997;吴锁平等,2007)。
表3-18 正长-碱长花岗岩主、微量元素与A型花岗岩对比表(%)
图3-35 岩石10000×Ga/A1-(Na2O+K2O)图、(Na2O+K2O)/CaO图、
K2O/MgO图和TFeO/MgO图和10000×Ga/Al-Zr、Nb、Ce、Y图
× 10-6),远高于I型花岗岩( ×10-6)和S型花岗岩( ×10-6)(吴锁平等,
一般来讲,高分异的I型花岗岩的TFeO含量较低<,而正长-碱长花岗岩Fe2O3值总体偏高,碱长花岗岩的TFeO含量~,平均为>,正长花岗岩的TFeO含量大多~,平均为>,反映了A型正长-碱长花岗岩形成于相对氧化的介质环境,这可能与其定位较浅的特点有关。
(2)高温岩浆浅成就位又是A型花岗岩的主要特征之一,是高硅A型花岗岩与高分异I型花岗岩的主要区别之一(Eby,1990;卢成忠等,2006;吴锁平等,2007)。这也与正长-碱长花岗岩岩石中出现较自形的高温锥状石英,以及部分岩石具晶洞构造、文象结构得到证实。
(3)从正长-碱长花岗岩石英包裹体测温(表3-19)上得到了高温岩浆浅成就位的A型花岗岩的又一佐证。正长花岗岩的石英包裹体测温成岩温度在720℃~900℃,碱长花岗岩石英包裹体测温成岩温度为750℃~980℃,碱性花岗岩石英包裹体测温成岩温度为750℃~1050℃,其成岩温度逐渐略有升高,表明源区岩石均经历了较充分的熔融,这也是形成A 型花岗岩的重要条件。以上石英包裹体测温表明,正长-碱长花岗岩形成温度高于高分异I型花岗岩形成温度764℃(King et al.,1997),表现出不同于高分异I型花岗岩的特征,也高于似斑状二长花岗岩的石英包裹体成岩温度670℃~870℃,反映出高温岩浆浅部就位结晶的特点。
(4)岩石δ18O值从早期正长花岗岩(。~‰,平均为‰)向晚期碱长花岗岩(‰)变低(表3-9),说明了岩石形成中可能同化了被大气降水浸泡过的岩石或是与这种岩石直接熔融作用有关,也从另一面说明了其形成于相对定位较浅的氧化环境(李之彤等,2001)。
(5)岩石的微量元素Ga、Rb、Ba、Sr、Zr、Y等含量、平均值(表3-17、表3-18)与A型花岗岩相似(Whalen,1987;吴锁平等,2007)。正长花岗岩的Ga元素 ×10-6~25 ×10-6(平均为 ×10-6),碱长花岗岩中G a元素 ×10-6~ ×10-6(平均为 ×10-6),与中国、世界的典型A 型花岗岩的平均值 ×10-6~ ×10-6接近。正长花岗岩的Rb含量124 ×10-6~385 ×10-6,平均为193 ×10-6<270 ×10-6,碱长花岗岩的R b含量大多为209 ×10-6~271 ×10-6(除GC-F-WL4 样外),平均为242 ×10-6<270 ×10-6,说明不是由高硅I型花岗岩分异形成(Pearce et al.,1984)。
岩石富含稀土元素(除Eu外),大多数样品的REE为 ×10-6~ ×10-6(平均为2007),也明显高于区域上广泛出露的同时代略早期的似斑状二长花岗岩( ×10-6)(韩振哲等,2008b)。岩石的稀土配分曲线形态呈轻稀土略微富集且缓向右倾斜、重稀土平坦的、铕强亏损的海鸥型,且微量标准化蛛网图上出现Ba、Sr呈负异常,也与A型花岗岩特征相符。
表3-19 早中生代花岗岩类包裹体测温分析结果表
续表
(6)在(Zr+Nb+Ce+Y) -(Na2O+K2O) /CaO图(图3-36)、TFeO/MgO 图(图3-36)中,岩石大多数落入A型花岗岩区、高分异的I、S花岗岩区,可能说明了正长-碱长花岗岩与同时代略早形成的壳幔混合成因似斑状二长花岗岩之间具一定的岩浆源岩的亲缘性。
以上充分说明了正长-碱长花岗岩的岩石学、岩石化学、地球化学特征上具铝质A型花岗岩的共性特征,略微不同于典型的碱性A型花岗岩。
关于A型花岗岩的成因有多种观点,主要有岩浆混合、残留体再熔融、幔源碱性基性岩浆和I型花岗岩浆分异、下地壳火成岩部分熔融和俯冲洋壳部分熔融等模式(Collins W J,1982; Bedarad J, 1990; Eby,1992; Turner S P,1992a; King et al.,1997;吴才来等,1998;肖庆辉等,2002;王德滋等,2002)。由此可见,A型花岗岩的成因与其所处大地构造背景不同、物质来源不同、岩浆演化过程的分异程度不同等密切相关,因而不可能用统一的成因模式来简单解释(吴锁平等,2007)。
小兴安岭地区的晚三叠世—早侏罗世正长-碱长花岗岩的成因,可能与基性岩浆底侵作用下的地壳古老变质基底物质的部分熔融作用和一定程度的壳幔岩浆混合、分异作用参者共同控制作用有关(韩振哲等,2009a)。其依据如下:
(1)残留体再熔融成因说只能解释传统的A型碱性花岗岩的高温、贫水和富氟、富HFSE的特征,而对铝质A型花岗岩要求另外的成因来解释,因与碱性花岗岩相比相对富铝,微量元素Y、Zr、Ta、Ba、Sr、Eu、P、Ti等富集程度也不同。
King等(1997,2001)在对澳大利亚Lacklan褶皱带的A型花岗岩进行研究的过程中,提出了铝质A型花岗岩的概念(包含了准铝至弱过铝A 型花岗岩),并认为A型花岗质岩浆都是由长英质地壳岩石在高温条件下部分熔融产生,岩浆在上升和侵位过程中的速度差异造成了岩浆化学成分的分异。铝质A型花岗岩与A型花岗岩在地球化学特征上既有共性,也有明显差异,尽管各家观点对铝质A 型花岗岩的源区物质组成、成因认识上存在一定分歧(Collinset al.,1982; Whalenet al.,1987;Eby.,1990,1992),但几乎一致地认为铝质A 型花岗岩源区应处在下地壳位置(Kinget al., 1997),但与I型源区不同,A型源区应是经过地幔流体交代而成为饱满型源区(fer-tile) (Zindleret al., 1986; Kinget al., 1997),即富集碱质和HFSE元素。Poitrasson et al.( 1994、1995)也主张铝质A型花岗岩起源于下部地壳物质的部分熔融,但他们认为下地壳源区的成分应主要是镁铁质的,而碱性花岗岩则为幔源岩浆与下地壳物质相互作用的产物,可能与壳幔岩浆混合作用有关。
图3-36 岩石(Zr+Nb+Ce+Y)-TFeO/MgO图、(Na2O+K2O)/CaO图
研究区内正长-碱长花岗岩,以及碱性花岗岩的稀土配分模式曲线、微量元素蛛网图(图3-32),以及Nd同位素特征基本相似(详见下述),说明两类A型花岗岩具有相似的岩浆源区,两者均为幔壳物质混熔的产物。两类岩石在地球化学特征的略微差异可能是岩浆分异演化的途径不同所致,而并非由岩浆源区的差异所引起。
(2)小兴安岭东南地区仅出露少量基性岩,且从出露的辉石闪长岩等的产出状态来看,大多为壳幔岩浆混合作用有关的同深成作用岩墙,缺少岩浆分异演化形成的闪长岩等过渡成分的岩石类型,说明幔源碱性岩浆分异模式缺少地质事实。
(3)岩石富K2O、富Al2O3的特征也表明岩石成因与地壳有关,而仅有幔源碱性岩浆分异、俯冲洋壳部分熔融是不可能形成高硅、高铝的A:型花岗岩,这可能是与幔源岩浆底侵作用下的富K2O、贫水的玄武质中下地壳间的壳幔岩浆混合、部分熔融作用有关。
(4)正长-碱长花岗岩的143Nd/144Nd初始值为~,介于上地壳()和地幔值()之间(李志昌等,2004)。岩石86Sr/87Sr初始值(~>大陆壳值)变化很大,说明其物质来源和形成过程的复杂性。一般认为与地幔Sr同位素的不均匀性和与基性岩浆底侵作用下的地壳物质的不同程度卷入有关或下地壳源岩成分差异有关(Collins等,1982;吴福元等,1999;李之彤等,2001;肖庆辉等,2002;李志昌等,2004)。岩石tDM模式年龄为1118~1328Ma,与时空上紧密相伴的、区域上的碱性花岗岩(143Nd/144Nd初始值为模式年龄为1244+18Ma)、似斑状二长花岗岩(86S/87S初始值为~之间,143Nd/144Nd初始值为~模式年龄为982~1295Ma)相似。岩石的高Sr、低Nd同位素反映花岗岩的原岩可能主要由沉积岩或变质岩组成的上地壳的特征,与tDM模式年龄反映的岩浆源区物质均为中元古代变质基底物质的特征相吻合(韩振哲等,2009a)。
(5)全岩δ18O也能作为物质来源的示踪剂(吴锁平等,2007)。正长-碱长花岗岩(δ18O 值大多为‰~‰,平均为‰<10‰),属正常δ18O略偏低值花岗岩类(表3-9),说明其源区物质成熟度低,且与地幔物质混入有关(泰勒,1968;张理刚,1983;李之彤等,2001)。少数正长-碱长花岗岩表现出低δ18O 花岗岩类(<6‰),这可能与岩石形成中同化了被大气降水浸泡过的岩石或是这种岩石直接熔融作用有关(泰勒,1968;张理刚,1983)。
(6)随正长-碱长-碱性花岗岩岩石的SiO2含量逐渐升高,岩石的Al2O3、Fe2O3、FeO、TiO2、MgO、CaO、P2O5、Na2O等与之呈显著负相关线性关系(大多数呈分散状线性相关性,除Al2O3外),而且各氧化物的线性斜率基本一致,说明在岩浆结晶分异、演化过程中与SiO2的结晶习性的一致性(图3-37)。从似斑状二长花岗岩石的分异指数(DI)值(大多为82~85)向正长-碱长花岗岩分异指数(DI)值(87~92)逐渐变大,固结指数(SI)值(平均值从~)逐渐变小,显示出岩浆分异演化的特征。
图3-37 正长-碱长花岗岩、碱性花岗岩哈克图解
○—细中(中细)粒正长花岗岩;●—细中粒碱长花岗岩;口—碱性花岗岩
(7)在时空上铝质A:型正长-碱长花岗岩与同时代的壳幔混合型(或称H型)似斑状二长花岗岩,以及典型的A型碱性花岗岩密切伴生(图3-1),构成了小兴安岭东南地区早中生代巨量的I(或称H型)-A型花岗质复合岩基,形成了构造环境有序演化的同一构造-岩浆序列,构造环境由碰撞后向碰撞后崩塌有序演化为特征。似斑状二长花岗岩、正长-碱长花岗岩的微量元素蛛网图(图3-7b、图3-32b)、稀土元素球粒陨石配分模式曲线图(图3-7a、图3-32a)的形态基本相似,可能反映了其物质来源、成因上的相似性,说明正长-碱长花岗岩成因也可能涉及一定程度的壳幔岩浆混合作用(孙德有等,2000、2004)。
2.岩石形成的构造环境探讨
A型花岗岩作为深源岩石之一,虽然对其成因机制还存在较大的争议,但它们均形成于拉张或非挤压的构造环境这一点已成共识。拉张地壳的减薄在时空上往往与深部热活动(如地幔上涌或基性岩浆的注入)有密切联系,A型花岗岩的形成多归因于热的软流圈地幔向上运动。软流圈上涌不仅为A型花岗岩浆的形成提供了必需的热和物源,而且会引起大范围内地壳物质的部分熔融。因此,大陆环境下的A 型花岗岩在一定程度上指示岩石圈减薄和软流圈上涌的时间、过程及其动力学机制(Loiselle and Wones,1979; Whalen et al.,1987; Sylvester P J.,1989; Eby,1990,1992; Turner S P et al.,1992; Neves al.,1995;洪大卫等,1995; King et al.,1997; Sylvester P ;邵济安等,2001a、b,2002;王德滋等,2002;苏玉平等,2005;卢成忠等,2006;吴锁平等,2007)。近来普遍的看法是,A型花岗岩代表了造山带岩浆作用和地盾区与裂谷有关的非造山岩浆作用的最后事件,并划分出了代表非造山板内环境的AA或A1型和造山后构造环境的PA或A2型(Whalen et al., 1987; Eby,1992;洪大卫等,1995)。
小兴安岭东南地区的正长-碱长花岗岩岩体中均无主动侵位造成的定向组构、岩浆面理构造等构造应变特征。岩体与围岩接触界面多见有岩枝、岩脉等,与围岩构造线方向不一致,围岩不因岩体侵入而发生变形,说明岩体的就位构造总体上显示出拉张环境下的被动就位的构造样式。
正长-碱长花岗岩岩石在微量元素Rb-(Y+Nb)和Nb-Y构造环境判别图解(图3-38)中均落入碰撞后花岗岩(POG)区。岩石在多阳离子R1-R2构造环境判别图(图3-39)中,大多数岩石落入造山晚期和非造山花岗岩的界线附近,说明了大陆碰撞结束、崩塌时的张性构造环境。
在岩石微量元素Sr-Yb图中,正长-碱长花岗岩大多数落入低Sr高Yb的南岭-浙闽型花岗岩区(图3-39),少数为低Sr低Yb类的喜马拉雅型花岗岩,可能说明其形成与碰撞后崩塌-伸展构造背景下的底侵幔源岩浆作用有关(张旗等,2005、2009)。
图3-38 花岗岩Rb-(Y+Nb)图和Ta-Yb构造环境判别图解
图3-39 花岗岩R1-R2构造判别图和Sr-Yb构造环境判别图解
在Eby(1992) Nb-Y-3Ga的A1、A2型判别图解(图3-40)中,样品投点大多落入了A2型造山晚期花岗岩区。在岩石微量元素比值Rb/Nb-Y/Nb图(图)中,岩石大多数落入A2型花岗岩区及其附近。
综上所述,小兴安岭东南地区形成于晚三叠世—早侏罗世的正长-碱长花岗岩具有铝质A2型花岗岩的典型岩相学、岩石化学、地球化学特征,不同于高分异Ⅰ型花岗岩。该地区早中生代铝质A2型花岗岩的确定,对该地区早中生代大地构造环境的探讨,提供了新的思路。
图3-40 花岗岩Nb-Y-3Ga构造判别图l和Rb/Nb-Y/Nb构造环境判别图