上传附件了,自己下载吧,连接在后面。希望对你有所帮助,望采纳。
摘要:随着私人汽车在中国的普及,车载导航仪成为了日常生活中必不可少的工具。车载导航系统的路径规划的研究无论是从方便驾驶员出行,提高运输效率,优化城市交通,还是在改造与提升交通管理系统上,都对现代的交通道路起着十分重要的影响,因此受到社会和政府部门的关注和大力支持。
本论文介绍了车载导航系统的发展历史和国内外研究现状,以及GPS车载导航系统的组成、功能、实现过程、路径规划算法以及地理信息系统的功能。并以MaoInfo为工具,在路径规划系统中实现了地图的基本操作。本文重点研究了车载导航系统的路径规划问题。综合考虑并比较了多种最短路径的选择算法,并对其优缺点进行了分析。
来自
关键词:GPS GIS 车载导航系统路径规划 Dijkstra算法
ABSTRACT
With thepopularization of private cars in China,the navigatorsbecame the daily life of the necessary tools. The car's navigation system pathplanning research whether from convenient drivers travel to improve transportefficiency and optimize the urban traffic, or in the reform and improve trafficmanagement system, all the way to modern traffic plays a very importantinfluence, and it is by society and government departments of the attention andsupport.
This paperintroduces the development history of the car's navigation system and researchstatus from domestic and structure, function and the realizationof the whole system are demonstrated in detail in this thesis. TheGIS(Geographic Information System) theory is introduced .By using MapInfosoftware as a supporting platform, basic operation of map are realized. Thealgorithms of Route Planning are discussed in detail. Think over and comparemany shortest path algorithms and present a improved algorithm based on theoriginal Dijkstra algorithm in this thesis. It saves memory space and increasesefficiency.
Keywords: GPS GIS Vehiclenavigation System Route-Planning Dijkstra algorithm
目录
第一章绪论................................................1
研究背景与意义...........................................................................................1
导航系统的发展概况............................................................................1
导航系统的发展历程....................................................................2
导航技术应用的发展趋势............................................................2
研究内容及安排...........................................................................................3
研究的内容...........................................................................................3
本文的安排...........................................................................................4
第二章GPS车载导航系统的结构与关键技术......................5
车载导航系统的发展...................................................................................5
车载导航技术的总体结构和关键技术.......................................................5
车载导航系统的总体结构...................................................................6
车载导航系统的关键技术...................................................................6
车载导航系统结构分析及功能要求...........................................................7
系统的功能要求...........................................................................................7
第三章路径规划的分析及设计.................................9
导航电子地图数据库的设计.......................................................................9
导航电子地图的数据结构与数据模型...............................................9
导航电子地图数据库的设计原则.....................................................10
导航电子地图数据库的结构设计与实现.........................................11
导航电子地图中道路网络的拓扑生成方法.............................................12
导航电子地图中道路网络的模型与储存.........................................13
折线道路网络的拓扑生成法.............................................................14
路径规划的分析及设计.............................................................................16
路径规划的基础算法.........................................................................16
限制搜索区域的路径规划算法.........................................................20
基于分层道路网络的分层路径规划算法.........................................22
限制搜索区域的分层路径规划算法.................................................24
第四章路径规划的优缺点分析................................25
算法的实验结果.........................................................................................25
算法实验结果的比对及优缺点分析.........................................................26
第五章结论...............................................29
论文小结.....................................................................................................29
路径规划系统的展望.................................................................................29
致 谢 ...................................................31
参考文献...................................................33
GPS1. SpaceThe space is part of GPS satellite by 24 work [1], it is located above the surface of the 20 200km, evenly distributed in six track surface (4) each track surface, orbit for 55 ° Angle. In addition, there are four star orbiting satellites active backup. The distribution of satellite in global anywhere at any time can be observed in 4 above, and can keep good satellite positioning accuracy of geometrical image solution. This provides a continuous on time in the global navigation skills. GPS satellite produces two groups, one group called Morse code (C/A Coarse/Acquisition Code11023MHz), A group called the P (Procise Code 10123MHz), P Code for higher frequency, not suffer interference, high precision, so by the . military control, and the password, generally, mainly for folk cannot . military service. C/A code for measures to lower accuracy, and deliberately used mainly open to . The ground controlThe ground control station by a master, five global stations and 3 ground control station. There are equipped with precision of the station clock and continuous measuring cesium visible satellites to accept machine. The satellite observation stations will obtain data, including the ionosphere and meteorological data, after initial treatment, to master station. Master station from various stations, satellite tracking data calculated the orbit and clock parameters, then will result to 3 ground control station. The ground control station in each satellite run over to the navigation, master station instructions and data into a satellite. The injection of each star GPS satellite, and in every time inject stood range from satellite before finally injection. If a ground fault, so in the satellite navigation of stored information can also be used for a period of time, but the navigation precision will gradually . User equipment partsUser equipment parts namely GPS signal receiver. Its main function is to capture by certain Angle of satellite deadline to choose to follow these satellites and satellite, the operation. When the receiver to capture the satellite tracking, after receiving antenna can be measured and satellite pseudo distance and the distance change, satellite orbits parameters, such as the demodulation data. Based on these data, the receiver can handle the computer by positioning solution method and computing the user's position in the longitude and altitude geographical position, speed, time, etc. The hardware and software receivers in GPS data post-processing software package and form a complete GPS user equipment. GPS receiver unit and receiving antenna structure is divided into two parts of the unit. Receiver generally USES machine and together two kinds of dc power supply. Setting machine aims to replace the power supply without interruption continuous observation. In use within the time machine power battery charging automatically. After shutdown, machine battery power for the RAM, memory, in order to prevent the loss of data. At present various types of accept machine, weight and small volume and light, facilitate the field Ground control system (by now), the Station so the control Station (Master), so now the Antenna (Ground), the Antenna control Station, colo springfield, Colorado (are). The ground control station is responsible for collecting information by satellite, and alex, relative to star satellite data from the atmosphere correction. Secondly, the existing users receiver for two and two, double-frequency due to price factor, general user buys more for single-rate at the application of GPS road engineeringThe application of GPS in road construction, is mainly used to establish various road engineering control network and determination of the control points electricity, etc. Along with the rapid development of the highway to survey technology, puts forward a higher request, due to long, known points less, therefore, with the conventional measure method not only, and the net difficulties are hard to meet the requirement of high precision. At present, China has gradually establish lines using GPS technology, then head high precision control network layont wires with conventional methods. Practice has proved, in a few tens of kilometers within the scope of the point error only 2 centimeters, reached the conventional method to realize the accuracy, but also greatly ahead of time. GPS technology also applied to the control measure of large bridge. Since it is unnecessary to tong, can form strong nets, improve accuracy of inspection, via conventional measure fulcrum is effective. GPS technology in the measurement of the tunnel has broad prospect of application, GPS, reduced need through conventional method, the intermediate links, therefore, high speed, high accuracy, significant economic and social GPS navigation and traffic management in automotive applicationsThree-dimensional navigation is the primary function, GPS, ships, aircraft and ground vehicles pacers can use GPS navigation device for navigation. Car navigation system is in the global positioning system (GPS developed on the basis of a new technology. Car navigation system by GPS navigation, self-discipline, navigation and microprocessor, speed sensor, gyro sensor and cd-rom drives, LCD display. GPS navigation systems and electronic map, radio communication network, computer vehicle management information system, combining can achieve vehicle tracking and traffic management and many other GPS in long-distance passenger vehicle management application (for example),In the first set of professional long-haul GPS vehicle management system, and long-distance communication GPS intelligent management system, for example, it is combined with the satellite positioning technology, GPRS/CDMA communications business, GIS, image collection technology, computer network technology, and database in the company to build a passenger control (C/S structure and B/S structure combining), and the other for points, the public security bureau and control YunGuan departments and departments of the control system, established by the control center system, wireless communication system platform (GPRS/CDMA), global positioning system (GPS), four parts and trackside equipment all-weather, a full range of driver and vehicle tracking management platform, System can be registered vehicle dynamic tracking and monitoring implementation, pictures, driving record, management, data analysis and so on the function, monitoring vehicles in electronic map, and display of vehicles running track data, Operating terminal optional internal network or the Internet server to visit and through the center to provide online IE browser integrated passenger management data analysis of the control system (B/S structure), And the capacity of the system software available according to the center of the hardware configuration and operating terminal server, the most greatly expanded, net vehicles 500,000 can not only is long, can the passenger vehicles such social vehicles. And the system still can use group management, different types of vehicles into different groups, facilitate the operation technology application examples in the navigatorGPS navigators international leading brand: Ahada YiHang (of) -- from silicon valley, now login China!The core products function:1) map queryA penny saved is a penny gained in operation on a terminal search your destination penny saved is a penny gained can record you always want to place, and retain information, also can be Shared with others and the location penny saved is a penny gained fuzzy query your attachment or a location near the station, hotel, such as ) route planningA penny saved is a penny gained GPS navigation system will be set according to the starting point and destination, automatic programming penny saved is a penny gained planning routes whether can be set to pass some penny saved is a penny gained planning routes whether can avoid high-speed etc. ) automatic navigationA penny saved is a penny gained speech navigation:To provide drivers advance in speech, navigation condition intersection traffic information, such as a way to understand the wizard tells you how to drive to the destination. Navigation in one of the most important function, make you need, through watching operation terminal voice prompt can safe penny saved is a penny gained picture navigation:In the end, will display operate maps and position of the car now, driving speed, the destination of the route, planning, crossing the road to penny saved is a penny gained redesign line:When you have the line planning, or go wrong when crossing, GPS navigation system according to your present position, for you to plan a new route to the principleGPS navigation system is the basic principle of measuring the satellite to known position of the distance between the user receiver, and then integrated satellite data can know the location of the receiver. To achieve this objective, the position of the satellite can according to record the clock time on satellite star found in a calendar. Visible GPS navigation system is part of the satellite launch navigation ceaselessly. However, due to the use of the user to accept machine with satellite space-borne clock clock synchronization, may not always except user 3d coordinate x, y, z, will also introduce a Δ t is the difference between the satellite and the receiver as unknown, then use four equations will these four unknown. So if you want to know, the receiver's place at least four satellites can receive the receiver can receive the GPS clock can be used to accurately on the two levels of second time information, Used to forecast the next few months in the general position of satellite prediction star alex, Can be used to calculate the location for the satellite radio star alex, the coordinates for a few meters to dozens of accuracy of each different, rice (change) satellite, And the GPS system information, such as receiver to code measurement can get satellite receiver, because of the distance to the clock contains receiver satellite transmission error, error and the atmosphere is called pseudorange. 0A yards of measured pseudorange called UA yards pseudorange and accuracy for about 20 meters of P yards, measured pseudorange called P yards pseudorange and accuracy for about 2 receiver of received signal, decoding technology, or other information on the carrier modulation in removed, can restore carrier. Strictly speaking, the carrier phase should be called the carrier frequency phase, it is patted the received by doppler frequency influence of satellite signal receiver carrier phase and machine generated signal phase difference oscillations. General bell in the epoch receiver determined to keep time measurement, satellite signal, it can track record of phase change, but start when the value of the receiver and satellite observations of the oscillator is not know the initial phase of the epoch, also don't know phase integers, namely the fuzzy degrees, only in data processing as parameters. Phase observations of high precision and mm, but the premise is a whole week, so only in fuzzy relative positioning, and a continuous observation can use phase observations, and to achieve superior level meters positioning accuracy of also only using phase to the localization way, GPS positioning and relative into single point positioning (difference). According to a single point positioning receiver is the observation data to determine the position of the receiver, it only USES pseudorange observation, can be used as a compendium of navigation and positioning vehicles. Relative location (difference) is based on the observation data of two above receiver to determine the relative position between the observation methods, it can be adopted pseudorange observation may adopt phase observation and geodesy or engineering measurement shall be made phase observation value relative the GPS observation satellite and the receiver is contained in the clock, atmospheric propagation delay, the multipath effect etc, in the positioning error when calculating by satellite radio star alex, the influence of error in relative positioning error when most public offset or weakened by positioning accuracy, so will greatly improve, double-frequency receiver can according to the observation of two frequency offset the atmosphere, the main part of the error of the ionosphere, high accuracy in the distance between the receiver when significant difference (air), should choose double-frequency receiver.
我有 QQ6544345联系
133 浏览 6 回答
225 浏览 3 回答
103 浏览 3 回答
319 浏览 3 回答
202 浏览 5 回答
360 浏览 3 回答
181 浏览 5 回答
127 浏览 5 回答
160 浏览 5 回答
262 浏览 5 回答
273 浏览 2 回答
173 浏览 4 回答
108 浏览 3 回答
104 浏览 3 回答
230 浏览 8 回答