模型有三个层次:
第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。
第二个层次,描述性统计,分析数据分布特征。
第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。
第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。
选题与预估计
问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。
问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。
问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。
问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。
问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。
论文模型构建方法如下:
首先要明确撰写论文的目的。
建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。
(一)问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。
列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立模型还是不够的,还要补充一些假设,模型假设是建立模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。
由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。
(二)模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的方法,最后顺利地建立方程式或归纳为其他形式的问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨。
引用现成定理时,要先验证满足定理的条件。论文中用到的各种符号,必须在第一次出现时加以说明。总之,要把得到模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析
把实际问题归结为一定的问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型需要作稳定性或其他定性分析。这时应该指出所依据的理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。
(四)模型的讨论
对所作的模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
数模论文的写作在比赛中可能是你论文质量好坏,得奖与否的最重要的因素。据初步的调查,很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法上面。不可否认,这会使你的建模水平得到提高,但在比赛时,你的想法再好,如果文字表达不清楚,很有可能使你的论文前功尽弃,因此学会如何写数模论文就很有必要了。关于怎么样写论文已经有了很多的介绍文章,这些都足以说明论文写作的重要性。一、充分重视论文摘要的写作 摘要在整个数模论文中占有及其重要的地位,它是评委对你所写论文的第一印象。在全国大学生数学建模竞赛中,组委会对论文摘要提出了专门的要求,再三明文提醒参赛者要注重摘要的写作。在论文的评阅中,摘要是你的论文是否取得好名次的决定性因素,评委们通过你的摘要就决定是否继续阅读你的论文。换句话说,就算你的论文其他方面写得再好,摘要不行,你的论文也不会得到重视或者根本上就没有评委来阅读你的论文。在摘要中一定要突出6个方面:问题,方法,模型,算法,结论,特色。简而言之,摘要应该体现你用什么方法,解决了什么问题,得出了什么结论。避免有主观评论,一定要突出重点,让人一看就知道这篇论文的目的是什么,做了什么工作,用的什么方法,得到了什么结果,有什么创新和特色。只有这样的摘要才是成功的。 具体写摘要的时间一般安排在论文基本完成以后,由一个队员具体负责,在写出初稿后由其他队员交替阅读提出修改,直到大家满意为止。 好的摘要都包含了两个共同的特点:简单与清晰。篇幅在一页之内。范例一:公交车调度方案的优化模型 摘 要 本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(,)根据双方满意度范围和程度,找出同时达到双方最优日满意度(),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,交待了综合效益目标模型及线性规划法求解。对问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。关键词:公交调度 模糊优化法 层次分析 满意度 范例二:彩票发行方案的最优决策 摘 要 目前,彩票在我国得到了迅速健康的发展,并且为我国的福利公益事业的发展做出了很大 贡献。本文针对目前流行的各种不同彩票发行方案,综合分析了各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素对各方案的影响,建立了三个模型。模型I:利用超几何分布原理,建立了头奖期望模型。依照此模型,得出传统型彩票中方案 、乐透型彩票中方案 (即 )设计较为合理;总体而言,乐透型彩票的方案 头奖期望最大,方案设计最为合理。模型II:综合考虑影响方案合理性的各种因素,建立了高项奖中奖概率、总中奖概率、奖项的设置以及奖金分配的多目标决策模型,求解得到:①方案19的加权目标函数值最大,在所有方案中它是最合理的一个方案;②“传统型”彩票方案1~4中,方案4较为合理;③“传统型”彩票方案(1~4)的加权目标函数值总体上小于“乐透型”方案(5~29),从普遍意义上讲,“乐透型”方案相对优于“传统型”; ④对于 (从 中选 )型的方案, 相同时, 为35、30、32、33、34时它们的合理性依次递减。模型III:考虑到彩票市场供给与需求的关系,并结合彩票管理部门与彩民双方的满意度,建立了多目标最优决策模型。通过彩票市场供给、需求随销售的走势,找到了均衡点,同时利用计算机编程,搜索出了更优的彩票发行方案。本文还从 的变化对模型的灵敏性作了准确分析,以及从单式投注向复式投注、适当提高总奖金额等方面为设置彩票发行方案作了进一步讨论。最后据此模型,向彩票管理部门提出了更为积极、实用的彩票发行建议;并从充分认识彩票、入市动机及心态、策略和技巧等三个方面对彩民摸彩、投彩提出了科学的参考意见。关键词: 机率 期望 多目标决策 超几何分布 满意度 范例三:奥运会临时MS超市网点设计的数学模型 摘 要 本文对调查数据进行了统计分析,在此基础上求出各商区人流量百分比和分布规律,然后进行MS网点的设计,建立了三个模型,并进行了仿真检验。 对问题一,分析得到不同年龄段观众在出行、就餐、消费等方面存在较大差别,因此依照年龄段按照性别的不同,分别对出行、就餐、消费等三个方面总结出观众概率分布的8条规律。 对问题二,利用BP神经网络原理,按照年龄段-性别-商区-进出口将网络分为三级,从就餐习惯和出入场馆两个方面进行链条分析,建立了各场馆最短路径下的人流量模型,编程求解得到20个商区的人流量分布(%):A1到A10商区分别为、、、、、、、、;B1到B6商区分别为、 、 、 、 、 ; C1到C4商区分别为、 、 、 。在人流量分布求出后,总结出对称性定理,即人流量以场馆进出口连线为轴斜对称,并给出了详细证明。 在问题三中,对观众购买欲望的相关因素进行了细致分析,建立了购买欲望与年龄、消费额的数学表达式,得到欲望矩阵 ,并对购买能力进行了模糊计算。然后,由两个基本限制条件:满足奥运会期间的购物需求和分布基本均衡,建立了数学表达式,建立了以赢利为目标函数的非线性多目标决策模型: 用Lingo编程求解,得到了一种可参考的MS网点设计方案:A1到A10商区建立大MS个数分别为3、1、0、0、1、3、1、0、0、1,小MS个数分别为0,1,2,2、1、1、1、2、2、1;B1到B6商区建立大MS个数分别为1、2、3、1、2、3,小MS个数分别为2、1、1、2、1、1;C1到C4商区建立大MS个数分别为2、4、2、1,小MS个数分别为2、0、2、1。 考虑到奥运赛程的安排,实际人流量、消费额、赢利等将随时间而发生变化,为进一步优化网点设计方案,根据系统动力学原理,基于技术用计算机对人流量与收益模型进行了系统仿真,并通过调式,对模型进行了检验和评估,从而验证了模型的合理性、科学性和实用性。 最后,对北京2008年奥运会从经济收入、旅游和硬件建设等方面提出了几点建议。 关键词:概率 人流量 对称性 欲望矩阵 多目标决策 系统动力学 系统仿真 范例四:长江水质的综合评价与预测控制 摘 要 本文根据调查数据的统计分析,对近两年的长江水质做出了全方位的综合评价,找到了高锰酸盐和氨氮污染源所在主要地区,并对未来10年水质污染进行了预测,提出了控制方案,给出了一系列较为科学的防污建议。 首先对近两年来长江流域17个主要监测断面的水质抽样,按照时间-空间的先后交互顺序进行统计,建立概率统计评判模型,结果发现:2003-2005年,长江85%的断面满足Ⅰ~Ⅲ类水质要求,12%的断面属Ⅳ、Ⅴ类水质,劣Ⅴ类水质占3%。两年来,长江水质局部变化较大,整体较为平稳,但优质水正在下降,超标水质呈上升趋势。为了寻找污染源,我们以长江干流7个断面作为基本观察点,根据水流量、水流速和降解系数,确立了污染源反馈指标: 经计算发现:江苏南京、湖南岳阳高锰酸盐污染最为严重,湖南岳阳同时又是氨氮污染源的主要地区,较为次之的是安徽安庆和江苏南京,但同比之下相差较大。 其次,对近10年的主要统计数据,按照GM(1,1)灰色原理,建立灰色预测模型,归一化处理后,通过DPS数学统计软件的计算,得到了水质类别的预测值和趋势函数,分析认为:长江 I、II、Ⅲ类水质总量呈现下降趋势,其中 I、Ⅲ类水质急剧下降,劣Ⅴ类水质上升幅度较大,到2014年超标水质总量百分比将达到,长江水质全面恶化,水生态环境严重失去平衡。为了有效控制污染恶化趋势,防止超标水质的上升,运用二次多项式逐步回归分析,得到废水排放总量关于各类水质百分比的函数,经编程运算,我们提出了长江污水处理方案。未来10年需要处理的污水量依次是:0,0,,,,,,,,(单位:10亿吨)。 最后,基于对长江水质状况的综合评价和未来污染趋势的预测,根据“保护长江万里行”考察团的实践调查,我们深刻意识到:长江流域水生态环境破坏日益严重,前景不容乐观。为防止长江“癌变”,我们提出了几种水环保理念:做到教育先行,努力唤起民众环境保护意识;坚持依法治水,为保护长江立法;实行科学规划,走可持续发展之路;提倡人文环保,构建和谐的生态系统和人居环境。 关键词 监测断面;概率统计评判;污染源反馈;灰色预测;逐步回归;人文环保; 二、论文主体要鲜明、结构要完整 按照数模论文的特点,其论文主体部分就包括以下内容: (1)问题提出——明确问题 这一部分没有过多的说明,一般是直接 copy 赛题的原文就行了,但我认为在时间充裕情况下可以适当归纳总结;因此可以写点这个问题的一些背景知识。明确问题即建模的准备阶段,要建立现实问题的数学模型,第一步是要对解决的问题有一个明确清晰的提法,通常我们遇到的某个实际问题,在开始阶段是比较模糊的,又带实际背景,因此在建模前必须对问题进行全面深入细致的了解和调查,查阅有关的文献,同时要着手收集有关的数据,收集数据时事先应考好数据的整理形式,例如利用表格或图形等。在这期间还应仔细分析已有的数据和条件,使问题进一步明确化。即从数据中得到什么信息?数据来源是否可靠?所给的条件有什么意义?那些条件是本质?那些条件是变动的等。对数据和条件的分析会进一步增强我们对问题的了解,使我们要更好地抓住问题的本质及特征,为下一步建模打下好良好的基础。 (2)模型假设——合理的假设 作为题目的原型都是复杂的,具体的,是质和量、现象和本质、偶然和必然的统一体。这样的原型如果不抽象和简化,人们对其认识是困难的,也是很难把握它的本质属性,而建模假设就是根据建模的目的对模型进行抽象,简化。把那些反映问题本质属性的形态,量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件。 但如何对问题提出合理的假设是一个比较困难的问题,这是因为作得过于简单,则使模型远离现实,无法用来解决现实问题,假设做得过于详细,试图把各个方面的因素都想进去,模型就会十分复杂,甚至难以建立,也对我们计算带来复杂化,一般模型假设遵从以下原则: ①目的性原则,从原型中抽象出与建模目的有关的因素,简化掉无关的因素或关系不大的因素。 ②简明性原则,所给的假设条件要简单,精确,有利于构造模型。 ③真实性原则,假设条款要符合情理,简化带来的误差应满足实际问题所允许的范围内。 ④全面性原则,在对事物原型本身作出的假设的同时,还要给出原型所处的环境条件。 最简单的作法:假设的条件一般可以从题目中挖掘。(1)根据题目中条件作出假设(2)根据题目中要求作出假设 需要值得注意的是:①对我们所解决问题本身没有影响(或影响比较小)但可以使模型得到简化的因素应该在假设中体现。②不能为了简化问题而大量假设(使求解问题本身与原题意不符),因此应注意假设的量与度。(3).符号说明——不可缺少 在你的论文中不可避免的会出现大量的数学符号,因此在这部分里应把这些符号做一个简要的说明,可以从符号,类型(变量,常量),单位,含义几个方面来说明(如下表):符号 类型 单位 含义 需要注意的是单位量纲要统一,含义解释要准确,清楚。 (4).问题分析——思路清晰、图文并茂 从题目到模型是一种从具体到抽象的思维过程,本部分即是这一过程的体现。这部分应是论文主体的一个亮点,建议在文字说明的同时用图形或图表列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。另外,这部分应对题目做整体分析,充分利用题目中的信息和条件,确定用什么方法来建立什么模型。经验告诉我们可以从题目中得到问题的一些初步的判定:比如说可以得到在极限情况下的最大产量,花费的最少时间等,使我们最后得到的方案不能超过(或低于)我们这里分析的量。在这部分应能体现我们解决原问题的雏形。总之,问题分析在整个论文中的作用在于承上启下,也很能反应出参赛者的综合水平。(5).模型建立——数学语言 数学模型就是:数学公式、图表、方案等。模型的建立是将原问题抽象成用数学语言的表达式,其建立方式会由于对问题的理解和着眼点不同而不同。近年来的数学建模竞赛出题主要有两个方向:一是概率统计问题;一是运筹优化问题。因此掌握好以上两方面的知识对于建立模型来说是十分重要的。另外,我还觉得应注意对每个模型式子的解释一定要清楚到位,其中的数学符号一定要与前面的说明保持一致。其基本方法为: 在建模的假设的基础上,进一步分析建模假设的条款,首先区分那些是常量,哪些是变量,哪些已知、未知,然后查出各种量所处的位置、作用和它们之间的关系 ,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻划实际问题的数学模型。 这里要注意两点:其一,构造一具体问题的模型是要尽可能地简单的模型,然后把它与实际问题进行比较,再把其次要的因素加进去,逐渐逼近现实来修改模型,使之趋于完善,这样应形成了由模型一,到模型二,再模型三,……,这样逐步逼迫现实的数学模型。其二,要善于借鉴已有的数学模型,许多的实际问题,尽管现象和背景都不同却有相同的模型。例如,力学中描述的力,质量和加速度之间的关系的的牛顿第二定律F= M a ,经济学中描述单价、销售金额和销售量之间的关系的公式C= p q等,数学模型都是y= k x ,要学会观察和分析,看到问题的本质,抓住本质特征,对我们已有的模型进行修正。 (6).模型求解——软件帮忙 不同的模型要用到不同数学工具求解,如可以采用解方程,画图形,证明定理,逻辑运算,数值运算等传统的方法和近代的数学方法,建模发展到现代,多数场合的模型一般多用软件编程求解。三大软件(Matlab,Maple,Mathematic)至少应熟悉一种,另外应学会一些专用软件。比如说解概率统计问题的DPS,SAS,SPSS;解运筹优化问题的 Lingo,Lindo 等。熟练利用这些数学软件会为我们求解带来快捷和方便。其次尽量用不同方法求解,这既能反应出你的思维比较开阔,也能间接地验证你所求解结果的正确性。另外应给出主要算法的一些简要步骤,处理或简化问题的方式,并适当应用表格或图像说明。最后需要提醒大家的是在必要时可以给出数学上的证明,这会使你的论文增色不少。 (7).模型(结果分析)——检验与修正 建立数学模型的目的在于解决实际问题。因此必须把模型解得的结果返回到实际问题,如果模型的结果与实际问题状况相符合,表明模型经检验是符合实际问题的,相反则不行,它就不能直接应用于实际问题。这时数学模型建立如果没有问题,就需要考虑建模时关于所假设的是否合理,检验是否忽略了不应该忽略的因素或还保留了不应该保留的因素。对假设给出必要的修正,重复前面的建模过程,直到使模型能够反映所给的实际问题。 通常的作法是:由于在模型假设中,忽略了一些对问题影响的次要因素,这或多或少的使问题得到了简化,但必然会产生一些误差;另外解决问题的方法是很多的,在论文中可能只用了其中的一两种方法,思维可能显得比较局限;而模型本身也会有它的优势和缺陷。因此,我们在这部分应该做的工作主要有下面三点:A.是否能用其他方式或方法解决。 B.模型的优缺点分析。 C.模型的误差分析或灵敏度分析。 做好上面的工作,既是对原问题的补充说明,更表现一种思维的严谨和逻辑的严密,使你的论文一气呵成,显得很完备。 (8).模型的评价与推广 什么样的数学模型是好的呢?一般来说一个好的模型应该具备以下五点: (1)对所给的问题有较全面的考虑。在一个实验问题中往往有许多的因素同时对所研究的对象发生作用,进行数学描述时,应该全面地对这些因素加以考虑。这项工作可分为三步进行: ①列举各种因素; ②选取主要因素计入模型; ③考虑其他因素的影响,对模型进行修正。 (2)在已有的模型上进行创造性的改进。数学模型是现实对象的抽象化,理想化的产物。它不为对象所属领域所独有,可以转移到另外的领域。在生态,经济,社会等领域内建模就常常借用物理领域中的模型,能否对已有的模型作为创造性的改造,是考虑一个数学模型的优劣的重要标志 (3)善于抓住问题的本质,简化变量之间的关系。数学模型应当是实际问题的本质刻画,模型过于复杂,则无法求解或求解困难,反之则不能客观的反映客观实际。 (4)注重结果分析,考虑其在实际中的合理性。数学模型是一个从实际到数学,再从数学到实际问题的过程。由于现在的模型仅仅依赖题中的数据,如果从模型中得到的结果与实际吻合,模型是成功的,反之则失败,要求我们进一步修改。 (5)具有较好的稳定性。数学模型是依赖已有的数据和其他的信息建立起来的,他的价值在于能够从已知的信息预测到未知的东西。因此,一个好的数学模型的结果对原始的数据有较好的依赖性,即原始的数据和参数有微小的变化不会引起结果很大的变动,这是模型适应性和有效性的保证。 由于论文本身的局限性,在这里可以对一些问题做更深入的探讨,这是文章又一亮点,实力比较强的队伍可以在这一块充分发挥。这部分对于整个论文的作用在于画龙点睛。另外,我们对问题的探讨与延拓方式是多种多样的:可以把假设的条件适当放宽了来考虑问题;可以对你的算法做出改进等等,但我认为在这里做做定性的分析就够了,最后主要对问题的横向和纵向两方面进行发散。因为评委的评阅工作至此已经基本结束了。(9).参考文献 这里注意一下格式问题,参赛要求有明确规定:A.书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。 B.参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 C.参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间。 至于附录,附上相关程序及运行结果,数学上的证明即可,最后注意一下论文的整体感,特别是文字表述是否准确严密。 三、用数学通用软件编写程序 在编写计算机程序时,基本原则是使用通用的、自己使用最熟悉的软件进行编写,这样可以尽快出结果,即使出错也能很快查出并进行改正。数学通用软件是建立在一定的理论基础和算法基础上的,其计算结果具有一定的可信度,因此,尽量使用matlab、mathematicas、lindo、lingo等数学软件编写的程序,能增加模型结果的可信度。另外,也可利用一些二次开发程序。如TSP,EXCEL,DPS等。 四、要善于合理使用图表 在论文写作中一定要注意能用图表的地方尽量用图表来表示,用图表比用文字阐述要来得清楚直接,一张图表往往能代替一大段干巴巴文字,并且图文并茂也可以为论文增加更多色彩。要知道评委们大都是老教授老专家,为了教授专家们的眼睛,减轻他们受文字的折磨,多用图表绝对是不错的选择。须注意的是图表的引用要规范,在交叉引用的时候一定要小心,不要错位,为此应给每一张图、每一个表都编上号,而且整篇文章的图、表的号码应该连续。图和表在论文中应尽量交替出现,同时排版时也应该让它们处于页面的中部,尽量避免出现在最顶端,这样可以增加文章的视觉美。 五、充分发挥团队的作用 在比赛中,队员之间的配合很重要,每个人对自己这个组的特长,要有一个比较清醒而统一的认识,擅长做哪种类型的题,不擅长做哪种。这样,在选题的时候才不会耽误太多时间。 分工的原则: •建模:推导数学模型,数学能力强 •编程:计算机能力强 •论文写作:写作能力强 其次,参赛队中应有核心队员,他的作用就相当于计算机中的CPU,核心队员发挥好了,就能带动一个队正常有效开展工作。无论是选题、讨论、写作、协调甚至情绪等,核心队员都应该充分发挥好,起领导作用,才能使整个队伍充满信心地、高效地完成比赛,否则可能导致队伍的情绪低落,没有信心,甚至前功尽弃。 六、合理控制写作进度 做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,论文一般分十个大的板块:摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录。要求我们的队员每天要做完哪几个板块的工作一般先要确定好,这样做才会使工作临阵不乱,保证在规定时间内完成论文写作,以避免由于时间已经用完而任务没有完成的被动局面,严重的最后无法完成论文。通常的竞赛时间安排:第一天:上午:确定题目,并查阅文献 下午:开始分析,建立初步模型 晚上:编程,得到初步计算结果 12:00 PM 休息•第二天:上午:得到第一个模型的合理结果 下午:开始写论文,并考虑对第一个模型的改进 晚上:得到第二个模型的初步结果 12:00 PM 休息•第三天:上午:得到第二个模型的合理结果 下午:考虑对前二个模型的进一步优化,得到第三个数学模型,或对前二个模型的正确性进行验证 晚上:得到最后结果,完成整篇论文
236 浏览 2 回答
110 浏览 3 回答
107 浏览 2 回答
217 浏览 1 回答
158 浏览 3 回答
139 浏览 3 回答
127 浏览 3 回答
301 浏览 2 回答
231 浏览 2 回答
180 浏览 3 回答
100 浏览 2 回答
155 浏览 5 回答
154 浏览 3 回答
263 浏览 2 回答
94 浏览 2 回答