1]蔡朝容. 国内β—胡萝卜素研究文献的情报分析[J]柳州职业技术学院学报 , 2004,(04) . [2]李全顺. β-胡萝卜素的研究进展[J]辽宁大学学报(自然科学版) , 2002,(03) . [3]李正华,江树勋,蔡桂琴,陈丽娇. 盐藻分子生物学研究概况[J]海洋科学 , 2005,(06) . [4]忻祥法. β-胡萝卜素研究动态[J]上海医药 , 2000,(09) . [5]李杰,尹红,陈志荣. β-胡萝卜素制剂化的研究进展[J]食品科技 , 2006,(11) . [6]刘晓庆,李杰珍,曾莉,邱水强,蔡宏滨,龙继贤. β-胡萝卜素对染尘肺泡巨噬细胞脂质过氧化和抗氧化酶的影响[J]同济大学学报(医学版) , 2002,(03) . [7]朱秀灵,车振明,徐伟,焦云鹏,熊华. β-胡萝卜素生理功能及提取技术的研究进展[J]西华大学学报(自然科学版) , 2005,(01) . [8]李杰,尹红,陈志荣. β-胡萝卜素制剂化的研究进展[J]中国食品添加剂 , 2006,(04) . [9]徐永芳,吴开国,杨莉. 脂质过氧化与矽肺及螺旋藻的抗氧化作用[J]中国职业医学 , 2000,(03) . [10]李全顺. β-胡萝卜素和维生素E对大鼠抗辐射作用的实验研究[J]卫生职业教育 , 2003,(03) . 1] 李杰. β-胡萝卜素异构化反应的研究[D]. 浙江大学 , 2006 [2] 秦敬改. 发酵法生产β-胡萝卜素[D]. 北京化工大学 , 2003 [3] 张新旺. β-胡萝卜素对MMC致小鼠骨髓细胞遗传损伤抑制作用的研究[D]. 山西医科大学 , 2004 [4] 朱旭东. 利用同位素示踪技术对β-胡萝卜素在大鼠体内分布的研究[D]. 南京农业大学 , 2004 [5] 周怡平. β-环糊精包埋β-胡萝卜素的研究[D]. 大连理工大学 , 2005 [6] 张国. C_(20)三个异构体稳定性的理论研究[D]. 吉林大学 , 2004 [7] 沈慧玲. WT1基因异构体对白血病细胞生物学行为影响的研究[D]. 苏州大学 , 2004 [8] 江志琴. β胡萝卜素在香烟烟雾溶液诱导人肺细胞DNA损伤中的作用[D]. 浙江大学 , 2006 [9] 陈丽芬. 缺氧对大鼠脑线粒体氧化呼吸功能和ANT活性及异构体表达的影响[D]. 第三军医大学 , 2004 [10] 赵文伟. C_2N~++HCN离子—分子反应机理的理论研究[D]. 吉林大学 , 2004 1]崔艳红. β-胡萝卜素诱导人乳腺癌MCF-7细胞凋亡与PPAR-γ信号传输及活性氧产生的联系[D]郑州大学 , 2006 . [2]秦敬改. 发酵法生产β-胡萝卜素[D]北京化工大学 , 2003 . [3]秦宏伟. 甘薯功能因子分析及质量评价研究[D]山东农业大学 , 2006 . [4]潘帅路. 类胡萝卜素产生菌的筛选及培养条件初步研究[D]四川大学 , 2006 . [5]朱秀灵. 提高浓缩胡萝卜汁中β-胡萝卜素含量的关键技术研究[D]西华大学 , 2005 . [6]金莹. 苹果多酚的超声波提取及其抗氧化性研究[D]山东农业大学 , 2006 . [7]孙建霞. 苹果多酚的提取分离及其主要功能活性研究[D]山东农业大学 , 2005 . [8]赵永彬. 胡萝卜渣的干燥方法及其类胡萝卜素提取工艺研究[D]西北农林科技大学 , 2005
β-胡萝卜素是类胡萝卜素之一,也是胡萝卜素的一种异构体,广泛存在于动物与植物的叶、花、根中。它属于多烯烃类,所有双键都参与共轭,其名称中的β-标记即由环中双键的共轭位置而得来。性质 纯品为深红色或暗红色、有光泽的斜方六面体或结晶状粉末。几乎不溶于水、无机酸、无机碱、甘油、丙二醇,微溶于甲醇、乙醇、环己烷,溶于石油醚、乙醚、油类,易溶于二硫化碳、丙酮、苯、氯仿。稀溶液呈黄色。对光、热不稳定。易被空气氧化为无生理活性的物质。封存于安瓿中,避光贮存于�6�120℃处。在植物中基本上总是与叶绿素共同存在。制取 可从天然物中提取或通过多步化学反应合成。前者有植物萃取、盐藻萃取和发酵法三种方法。在中国从天然植物中提取的方法已经基本淘汰。化学合成法历经中间体3,8-二甲基-3,5,7-癸三烯-1,9-二炔(C12)及4-(2,6,6-三甲基-1-环己烯-1-基)-2-甲基-2-丁烯-1-醛(C14)。[1]工业品一般制成β-胡萝卜素的食用油脂溶液或乳化液、悬浮液及可分散于水的粉末。为提高其稳定性,可添加抗氧剂、分散剂、乳化剂,并可含有不同的比例的顺反异构体。[2]生物合成以异戊二烯焦磷酸为原料,经过二甲烯丙基焦磷酸、牻牛儿焦磷酸、法尼基焦磷酸、牻牛儿牻牛儿焦磷酸、八氢番茄红素和番茄红素中间体。历史 1831年首先由Wackenroder分离出来。1907年时Willst�0�1tter和Mieg算出了β-胡萝卜素的实验式为 C40H56。[3][4][5]1919年Steenbock提出β-胡萝卜素与维生素A之间可能存在联系,提出维生素原这个概念。1930~1931年Karrer首先推断出β-胡萝卜素的结构。[6]这是第一个被推断出结构的维生素或维生素原分子,因此Karrer后来获得了1937年的诺贝尔奖。1950年Karrer和Eugster,[7]Inhoffen等人,[8]和Milas等[9]完成了它的首次全合成。1954年罗氏公司开始了β-胡萝卜素的工业生产。80年代早期,提出它可能有预防癌症的作用,从而进一步研究,发现了它有抗氧化剂的功效。用途 用作营养增补剂和食品色素。在体内是维生素A的合成前体,在肝、大肠中酶催化下分解成两分子维生素A,故也称维生素A原、前维生素A。[10]β-胡萝卜素摄食过度会造成胡萝卜素沉着症(Carotenodermia)。它对人体无害,但会表现为皮肤的橙色色素沉着。[11]2008年的研究发现,长期的β-胡萝卜素摄食过度会增加吸烟者得肺癌的机率。[12]β-胡萝卜素英文名β-CaroteneIUPAC英文名β,β-carotene识别CAS号7235-40-7(C)(C)C=2/C=CC(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C性质化学式C40H56摩尔质量 g mol�6�11外观深红色结晶密度 ± g/cm3熔点180-182 ℃若非注明,所有数据都依从国际单位制,以及来自标准状况(25 °C, 100 kPa)的条件。 参考资料^ Isler. et al., . Pat. No. 2917539 (1959).^β-胡萝卜素.化工引擎.于2009年8月16日查阅. Willst�0�1tter, Escher, Z. Physiol. Chem. 64, 47 (1910).^ Kuhn, Lederer, Ber. 64, 1349 (1931).^ Barnett et al., US 2848508 (1958).^ P. Karrer, A. Helfenstein, H. Wehrli, A. Wettstein (1930), "Pflanzenfarbstoffe XXV. �0�5ber die Konstitution des Lycopins und Carotins", Helvetica Chimica Acta 13: 1084–1099, DOI: Karrer, Eugster, Compt. Rend. 250, 1920 (1950)^ Inhoffen et al., Chem. Ztg. 74, 285, 309 (1950)^ Milas et al., J. Am. Chem. Soc. 72, 4844 (1950).^ Susan D. Van Arnum (1998), Vitamin A in Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley, DOI:, at pp. 99–107^ Stahl W, Heinrich U, Jungmann H, et al. (1998), "Increased Dermal Carotenoid Levels Assessed by Noninvasive Reflection Spectrophotometry Correlate with Serum Levels in Women Ingesting Betatene", Journal of Nutrition 128 (5): 903-7, PMID 9567001^ Tanvetyanon T, Bepler G (July 2008), "Beta-carotene in multivitamins and the possible risk of lung cancer among smokers versus former smokers: a meta-analysis and evaluation of national brands", Cancer 113 (1): 150–7, PMID 18429004, DOI:
从胡柚保健与药用角度分析,体现在如下几个方面: (1)、常山胡柚的保健食疗功能:《本草纲目》记载:“柚(气味)酸、寒、无毒、有消食、解酒毒、治饮酒口气,去肠胃恶气、疗妊不思食、口淡之功能”。常山胡柚是以柚为母本的天然杂交种,很好地保存了柚的这种药用功能。胡柚的镇咳化痰、清热解毒、解酒醒脑作用,历来为产地柚农所采用。患感冒咳嗽,尤其是婴幼儿伤感干咳或多痰,以胡柚果实加冰糖热蒸后口服数次即可康复。吸烟过度常有痰多、咽喉发炎、呕心之虞或伴有牙痛等症,若能多食胡柚鲜果、柚汁或果脯,便能消除或减轻上述不适之感。饮酒过量,往往有头晕、眼花、呕吐、肠胃不适,若能进食鲜胡柚,就能解酒醒脑,去肠胃恶气,倍感舒服。常山县用胡柚为原料新开发的解酒新药“酒之侣”和治疗上呼吸道感染、急慢性支气管炎的“胡柚枇杷止咳露”,已经试用,颇受好评。此外食用胡柚鲜果,对糖尿病患者不会引起血糖升高;对高血压病患者有降血压之疗效;对便秘患者有通便之功能。(2)胡柚果实中的保健成分:苦味物质苦味物质包括柠檬苦素类和柚皮苷类物质, 其中柠檬苦素类化合物在甜橙和宽皮柑桔类中含量颇高, 而柚皮苷类物质则主要存在于柚类。由于胡柚可能起源于柚与橙及宽皮柑桔的杂种, 因此这两类苦味物质含量均较高。柠檬苦素类化合物具有多方面的保健作用,:①抗癌作用;②镇痛、抗炎作用;③抗焦虑和镇静作用;④调节体内胆固醇的水平,防止动脉粥样化等。主要有胡柚的降血脂功效可能与柠檬苦素等物质有关。柚皮苷具有消炎抗病毒作用,是枳壳等柑桔类中药材的主要药效成分之一。胡柚果汁中苦味物质的种类和含量,见表4。表4 胡柚果汁中苦味物质的种类和含量苦味物质类型类柠檬苦素类黄酮柠碱(ppm)柚苷(ppm)新橙皮苷(ppm)胡柚原汁(中国农业科学院柑橘研究所贮藏加工研究室测定)类胡萝卜素类胡萝卜素是一类脂溶性色素,是柑桔类成熟果实呈现色泽的原因。类胡萝卜素还是一类具有抗氧化、防衰老、抗癌、增强人体免疫力、降低、心血管疾病和眼睛疾病发生的生物活性物质。但胡柚与其亲本之一的柚一样,果皮中类胡萝卜素含量偏低(表5)。表5 胡柚果实类胡萝卜素的含量(μg/g FW)项 目叶黄质(μg/g FW)玉米黄素(μg/g FW)β-隐黄质(μg/g FW)果 肉果 皮(浙江大学果树科学研究所测定)类黄酮类黄酮类物质具有超强的抗氧化能力,是天然抗衰老物质,不少黄酮类物质还是抗心血管疾病的良药,对防止动脉硬化、心肌梗塞等症有良好的疗效。三、保健与药用价值的开发1、利用胡柚果实中具有药理作用的物质成分,例如柚皮苷,柠碱等开发成保健食品或药品都是具有巨大的潜在经济价值。从营养保健的角度对现有产品进一步深加工,有如下方面:(1)研究现有深加工产品所特有的营养保健因子,特别是维生素C和类胡萝卜素和一些植物化学物。(2)根据产品所针对的不同人群可强化一些与产品相适宜,人群又容易缺乏的一些营养素,特别是维生素和矿物质。(3)添加一些胡柚所特有的一些植物化合物,增加其产品的保健功能。2、对加工产生的胡柚皮和籽进行功效成份的提取,进行保健品和药物中间体的开发:胡柚皮和籽含有丰富的植物化合物,例如:类黄酮,萜烯类和柠檬苦素。和膳食纤维采用不同的方法对胡柚皮和籽的功效成份的提取,利用这些有效成份可开发具有降血糖,调节血脂,改善人体免疫功能、减肥美容和抗氧化防衰老等功效的保健食品。对有些植物化合物进行进一步提取,特别是柠檬苦素和柚皮苷,可生产出具有预防肿瘤,降血脂,抗病毒等药理作用的药物中间体。
微生物育种-诱变育种摘要:分析了近几年来我国常用的几种物理诱变和化学诱变育种方法的原理、特点以及成功案例等, 为微生物诱变育种提供了依据。综述了其在酶制剂、抗生素、氨基酸、维生素、杀虫剂等高产菌种选育中的应用进展;对该技术与离子束技术、空间技术的结合在微生物菌种选育中的应用前景进行了展望。关键词:诱变;微生物育种;应用进展;展望 微生物与酿造工业、食品工业、生物制品工业等的关系非常密切, 其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以培育优质、高产的微生物菌株十分必要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导, 或者促使细胞内发生基因的重新组合优化遗传性状, 人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。此外,原生质体诱变技术已广泛地应用于酶制剂、抗生素、氨基酸、维生素等的菌种选育中,并且取得了许多有重大应用意义的成果。1、诱变育种物理诱变紫外照射紫外线照射是常用的物理诱变方法之一, 是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm, 因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。电离辐射γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基, 这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。离子注入离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性, 随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。离子注入法进行微生物诱变育种, 一般实验室条件难以达到,目前应用相对较少。 激光激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用, 都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。 微波微波辐射属于一种低能电磁辐射, 具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。 航天育种航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间, 利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。航天育种较其它育种方法特殊, 是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。2.1 化学诱变 烷化剂烷化剂能与一个或几个核酸碱基反应,引起DNA 复制时碱基配对的转换而发生遗传变异, 常用的烷化剂有甲基磺酸乙酯、亚硝基胍、乙烯亚胺、硫酸二乙酯等。甲基磺酸乙酯( ethylmethane sulphonate ,EMS) 是最常用的烷化剂,诱变率很高。它诱导的突变株大多数是点突变,该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。N- 甲基- N'- 硝基- N- 亚硝基胍( NTG) 是一种超诱变剂,应用广泛,但有一定毒性,操作时应该注意。在碱性条件下,NTG 会形成重氮甲烷(CH2N2),它是引起致死和突变的主要原因。它的效应很可能是CH2N2 对DNA 的烷化作用引起的[2]。硫酸二乙酯( DMS) 也很常用,但由于毒性太强,目前很少使用。乙烯亚胺,生产的较少,很难买到。使用浓度,高度致癌性,使用时需要使用缓冲液配置。 碱基类似物碱基类似物分子结构类似天然碱基,可以掺入到DNA 分子中导致DNA 复制时产生错配,mRNA 转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有5- 氟尿嘧啶( 5- FU) 、5- 溴尿嘧啶( 5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 对产色素菌( 分枝杆菌T17- 2- 39) 细胞进行诱变,生物量平均提高. 无机化合物诱变效果一般,危险性较小。常用的有氯化锂,白色结晶,使用时配成的溶液, 或者可以直接加到诱变固体培养基中,作用时间为30min~2d。亚硝酸易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成 的浓度, 使用时加入等浓度等体积的盐酸即可。 其他盐酸羟胺,一种还原剂,作用于C 上,使G- C 变为A- T。也较常用,使用浓度为~,作用时间60min~2h。此外,诱变时将两种或多种诱变因子复合使用,或者重复使用同一种诱变因子,效果更佳。顾正华等[7]以谷氨酸棒杆菌ATCC- 13761 为出发菌株,经DMS 和NTG 多次诱变处理,获得一株L- 组氨酸产生菌。2、诱变剂 诱变剂的选择在选择诱变剂时, 需要注意诱变剂的专一性, 即某一诱变剂或诱变处理优先使基因组的某些部分发生突变而别的部分即使有也很少发生突变。对诱变剂专一性的分子基础不十分了解万尽管有关的修复途径必定对此有影响, 但它们的关系并不那么简单, 其它各种因素,包括诱变处理的环境条件也能影响突变类型。工业遗传学家很难正确地预言改良某一菌种时需要何种类型的分子水平的突变。因此, 为了产生类型尽可能多的突变体, 最适当的方法是采用几种互补类型的诱变处理。远紫外无疑是所有诱变剂中最为合适的, 似乎可以诱导所有已知的损伤类型。采取有效、安全的预防方法也很容易。在化学诱变剂中, 液体试剂比粉末试剂更易进行安全操作。的另一个不利因素是它有产生紧密连锁的突变丛的趋势, 尽管这种效应在某些体系中能成为有利条件。最后, 必须认识到可能某些特异菌系用某些诱变剂是不能被诱变的。当然这一点通过测定易检出的突变体, 如抗药性突变体或原养型回复突变体的诱变动力学可以相当容易地得到验证。[8] 诱变剂的剂量从随机筛选的最佳效果看, 诱变剂的最适剂量就是在用于筛选的存活群体中得到最高比例的所需要的突变体, 因为这会使在测定效价的阶段更省力。因此在菌株改良以前,为了决定所用诱变剂的最适剂量, 并为突变性的增强技术打下基础, 聪明的做法通常是测定不同诱变剂处理不同菌种时的突变动力学。用高单位突变本身来测定最适剂量有时是不可能的, 因为这种突变的检测很困难。但如使用容易检出的标记如耐药标记, 只要估计到方法的局限性, 还是可以提供一些有价值的资料的。[9]3、原生质体诱变在工业微生物育种中的应用进展 在酶制剂菌种选育中的应用酶制剂是活的有机体产生的有催化活性的蛋白质,是所有新陈代谢过程必不可少的要素。应用原生质体诱变技术对酶制剂的生产菌株进行诱变,已经获得了许多高产菌株。胡杰等[10 ]对沪酿(Aspergillus oryzae) 31042米曲霉的原生质体进行紫外线-氯化锂、N-甲基- N′-硝基-N - 亚硝基胍( N - methyle - N′- nitro - N -nitrosogunidinc, NTG)复合诱变,筛选到8 株高产中性蛋白酶突变株群,其中最高产酶活力为出发菌株的1162倍,为以后的细胞融合、基因组改组等提供了优良的候选文库。3.2抗生素高产菌种选育中的应用抗生素是微生物细胞的次级代谢产物,目前主要采用微生物发酵法进行生物合成。由于生产菌种产量的高低受多步代谢调控的制约,高产菌株的选育也很困难。原生质体诱变作为一种诱变技术,在抗生素的高产菌种选育中已有着广泛的应用。朱林东等[ 11 ] 通过紫外线诱变始旋链霉菌( S treptom ycespristinaespiralis)的原生质体, 得到了产普那霉素为1159g/L的高产突变株,比出发菌株提高10113%。 在氨基酸、生产溶剂及有机酸菌种选育中的应用氨基酸是生物功能大分子蛋白质的基本组成单位,在食品、饲料、医药、化学工业、农业等行业中应用广泛,各国都在大力发展氨基酸生产。发酵法已成为氨基酸生产的主要方法。因此选育高产菌株是氨基酸工业发展的重要方向。生产溶剂和有机酸是微生物的初级代谢产物,原生质体诱变技术在生产溶剂和有机酸生产菌种选育中也取得了成效。 生素菌种选育中的应用维生素是维持人和动物生命活动必需的、但不能自身合成的一类有机物质,在生长、代谢、发育过程中发挥着重要的作用。韩建荣等用激光处理青霉( Penicillium sp) PT95 的原生质体,选育到一株菌核生物量和类胡萝卜素含量均有显著提高的突变株L05。该突变株的菌核生产量提高 ,菌核中的类胡萝卜素含量提高 ,类胡萝卜素产率的增加幅度达到。 虫菌种选育中的应用苏云金杆菌(B acillus thuringiensis)是从自然界中筛选出来的一大类细菌型微生物杀虫剂,多应用于农林害虫的防治中。王丽红等[ 12 ] 对苏云金杆菌NU- 2的原生质体进行紫外线-氯化锂复合诱变,筛选到的突变株发酵周期从44h缩短到,晶体蛋白含量提高。4、 展望未来近年来,随着新的诱变源的出现,原生质体诱变技术的应用也会有新的进展。离子束作为一种新的诱变源,有其特有的作用机理[ 13 ] ,使得离子束诱变具有诱变谱广、变异幅度大、突变率高等优点,其应用也取得了很多重要的成果,特别是运用离子注入选育Vc菌株的成功,为我国的VC 行业增添了活力。航天搭载的微生物菌种,能借助微重力、空间辐射、超真空等综合空间环境因素的转换,在较短时间里创造目前其它育种方法难以获得的罕见基因突变,以此来进行微生物育种是空间技术育种的一个重要的应用领域。利用空间技术对某些抗生素的产量提高及酶制剂研究曾有些可喜的结果。将离子注入、空间技术与微生物原生质体技术结合起来,微生物原生质体诱变技术将会有更加广阔的应用前景。5、结语随着遗传学和分子生物学领域的飞速发展, 许多新型复杂的技术被应用于菌种选育, 如原生质体融合育种技术和基因工程育种技术等, 但是诱变育种技术仍是提供菌株生产能力的重要有效手段。它获得的正突变率相对较高,可以得到多种优良突变体和新的有益基因类型。另一方面,诱变育种存在一定的盲目性和随机性,在实际应用中,研究者应根据出发菌株及实验室条件等具体情况来选择合适的诱变方法。本实验室将物理因子和化学因子结合起来对多种酵母菌株进行复合诱变,均得到了理想菌株。此外,我们正在尝试反复采用几种诱变因子进行多次诱变,以期得到更为理想的菌株。参考文献:[1] Madigan,(美),(美),Parker,J.(美).微生物生物学[M].北京:科学出社,2001:390.[2] 曹友声,刘仲敏.现代工业微生物学[M].长沙:湖南科学技术出版社,1998.[3] 陈义光,李铭刚,徐丽华,等.新型物理诱变方法及其在微生物诱变育种中的应用进展[J].长江大学学报,2005,2(5):46- 48[4] 余增亮.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):251- 257.[5] 胡卫红.激光辐照微生物的研究概况[J].激光生物学报,1999,8(1):66- 69.[6] Leach and reproductive effects of microwave radiation[J].Bull NYAcademicMedicine,1980,55(2):249- 257.[7]顾正华.L- 组氨酸产生菌的选育[J].无限轻工大学学报,2002,21(5): 533- 535.[8]施巧琴,吴松刚.工业微生物育种学(2 版)[M].北京:科学出版社,2003:1- 4,76- 78.[9]戴四发, 黎观红, 吴石金.现代工业微生物育种技术研究进展.微生物学杂志, 2000 年6 月, 20 卷, 2 期.[ 10] 胡杰,潘力,罗立新,等1米曲霉孢子原生质体复合诱变及高活力蛋白酶菌株选育[ J ]1食品工业科技, 2007, 28 (5) :116~1191[ 11 ] 朱林东,金志华1普那霉素产生菌的原生质体诱变育种[ J ]1中国抗生素杂志, 2006, 31 (10) : 591~5941[ 12 ] 王丽红,郭爱莲1苏云金杆菌NU- 2原生质体复合诱变的研究[ J ]1微生物学杂志, 2006, 26 (4) : 23~261[ 13 ] Huiyun Feng, Zengliang Yu, Paul K Chu1 Ion imp lantationof organisms [ J ] 1Materials Science and Engineering, 2006, 54(3- 4) : 49~1201
沙棘的营养与健康摘要:沙棘,又名醋柳,是一种小乔木,它起源于距今约2500万—4000万年前,同青藏高原和喜马拉雅山的形成处于同一时代;它经历了冰期、间冰期和喜马拉雅山造山运动的严酷生态环境变迁考验,具有强大的生命力。目前广泛分布于青藏高原、西伯利亚等地区。研究发现,沙棘果实中的活性成份多达190多种。其中包括脂溶性维生素6种,脂肪酸22种,脂类42种,黄酮和酚类36种。沙棘是自然界活性成份最全的植物,是营养植物之冠,具有预防心血管类疾病,抑制多种肿瘤细胞的增生、促进细胞退化,提高人体机体抗病能力,保肝护肝,抗衰老,促进肠胃健康,抗烧伤烫,养颜护肤,预防缓解神经衰弱,抗辐射、抗炎生肌等多种功效关键词:沙棘 营养 健康 沙棘果油 沙棘,又名醋柳,是一种小乔木,它起源于距今约2500万—4000万年前,同青藏高原和喜马拉雅山的形成处于同一时代;它经历了冰期、间冰期和喜马拉雅山造山运动的严酷生态环境变迁考验,具有强大的生命力。目前广泛分布于青藏高原、西伯利亚等地区。研究发现,沙棘果实中的活性成份多达190多种。其中包括脂溶性维生素6种,脂肪酸22种,脂类42种,黄酮和酚类36种。 沙棘是一种生命力极强的灌木,一般生长在干燥、寒冷的贫瘠的山区。在我国,沙棘主要分布在山西、西藏、内蒙等省区,沙棘果和叶含有丰富的生物活性成分,是珍贵的药食两用植物资源。早在1300年前,唐代的《月王药珍》、《四部医典》记载了沙棘的医药用途,祖国医学理论认为,沙棘主要有利肺、壮阳、养胃、健脾、活血、化瘀等药理作用。 另外,沙棘还具有独特的功效,沙棘提取物维生素E等营养物质 能滋养皮肤,促进细胞代谢,促进上皮组织再生,具有抗过敏、抑菌、强渗透力和保护皮肤自然色泽的作用。 现代化学成分分析表明.沙棘富含维生素C、维生素E、类胡萝卜素、多种氨基酸、蛋白质、亚油酸、磷脂、黄酮、多种微量元素等营养成分。沙棘籽中不饱和脂肪酸高达80%,含有人体必需的八种氨基酸中,沙棘含有钙、铁、锌钾、硒等十一种人体必须的微量元素。沙棘中提取的沙棘籽油富含维生素E、类胡萝卜素、苦木素、香豆素、氨基酸、不饱和脂肪酸等,因而,沙棘在临床上对烧伤、烫伤及宫颈糜烂有显著疗效;对慢性浅表性胃炎、畏缩性胃炎、胃溃疡、十二指肠溃疡、口腔溃疡、久病体虚、老年性体弱等疗效确切;预防和治疗冠心病、心绞痛、动脉硬化等心脑血管疾病; 沙棘对恶性肿瘤有明显的抑制作用,能阻断致癌物V-亚硝酸的合成和抑制黄曲酶素诱发癌前病变的作用,对胃癌、肠癌、肺癌、食道癌、乳腺癌、白血病等有抑制治疗作用。《中国食品报》报道,陕西省肿瘤防治研究所最近提供的54例肿瘤病人服用沙棘油表明,肿瘤迅速变小或消失者占84%。 沙棘系列产品的问世,是二十一世纪胃肠疾病、心脑血管疾病、肿瘤癌症、烧烫伤等患者的福音,沙棘籽油等产品是疗效显著的纯天然绿色保健品。 沙棘含有160多种生物活性物质、8种氨基酸、11种微量元素、具有极高的药用价值和营养价值。沙棘富含维生素E,可以阻断亚硝酸盐在人体合成致癌物质-亚硝铵;沙棘油富含的儿茶素对由TPA引起的细胞癌和黄霉素乃苯并具有强烈抑制作用;沙棘富含的β-胡萝卜素则是良好的抗氧化剂,可阻止化学物质的致癌过程,起到抗癌治癌的效果。沙棘籽油对白血病、肉瘤、黑色素瘤、艾氏腹水瘤、胃癌等抑制效果尤为显著。 沙棘果油是以沙棘果为原料经CO2超临界萃取的一种天然营养保健油,沙棘果油含丰富的油酸和亚油酸,含量高达85%,沙棘素有“天然维生素胶丸”,含有丰富的维生素还含有磷、铁、镁、锰、钾、钙、硼、硅、铜等24 种微量原素,尤以钙、铁、锌、钾、硒的含量最多。另外,沙棘果油中有一定量的膳食纤维但胆固醇含量为零。因此,沙棘果油是中老年朋友最具价值的保健油。 一、沙棘是自然界活性成份最全的植物,是营养植物之冠 沙棘所含有的生物活性物质主要有10大类:磷脂类、维生素类、5-羟色胺、多种挥发油类、酚类及有机酸类、蛋白质和氨基酸类、三萜、甾体类化合物、人体必需的多种微量元素、油和脂肪酸类(亚油酸、亚麻酸等)、黄酮类化合物(沙棘复合总黄酮)。 沙棘中富含维生素 C。沙棘维生素 C的含量是一切蔬菜水果类之冠:是猕猴桃的2—3倍,桔子的6倍,山楂的20倍,西红柿的80倍,苹果的200倍。此外,沙棘果还含有维生素 E,B-胡萝卜素,及 B族维生素,沙棘是维生素“源”植物,被誉为“维生素宝库”。 二、沙棘具有广泛的医药和营养保健功能 沙棘对于预防和治疗各种疾病、强身健体、延年益寿有着特殊重要的作用。我国卫生部在1977年将沙棘正式列入《中华人民共和国药典》,国家中医药管理局编写的《中华本草》中也记载了沙棘的药用功效。 我国第一部详细记载沙棘医疗作用的经典著作,是公元8世纪下半叶的藏医巨著《四部医典》,这也是世界上第一部系统记载沙棘药效的医学著作。以及后来清朝医学名著《晶珠本草》,都对沙棘的应用做了大量的论述这个是我们以前做过的一个实验报告,不知能否算 呵呵
84 浏览 4 回答
109 浏览 5 回答
352 浏览 5 回答
348 浏览 3 回答
322 浏览 3 回答
99 浏览 6 回答
227 浏览 3 回答
290 浏览 5 回答
256 浏览 5 回答
318 浏览 2 回答
179 浏览 8 回答
189 浏览 5 回答
270 浏览 1 回答
217 浏览 8 回答
290 浏览 5 回答