代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。初等基本内容三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。规则五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。(1)a-b=0,a=b(2)a+b=0,a=-b,b=-a(3)a*b=0,a=0 或 b=0(4)a-b) (a-b)=0,a=b高等研究对象高等代数是代数学发展到高级阶段的总称,它包括许多分支。大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。与线性代数的区别和联系很多人把高等代数和线性代数混为一谈,不明白其中的区别。高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程