%%%%暗原色去雾算法是建立在户外自然场景暗通道优先法则的基础上的去雾方法,其实就是解一个方程%%I(x)=J(x)t(x)+A(1-t(x));其中I(x)是受到雾气污染的图像。J(x)是我们需要求的去雾后的图像%%t(x)是天空中云层的透射分布率,A是天空的亮度%暗影去雾算法% 原始图像img_name = imread('C:\Users\Administrator\Desktop\桌面文件\专业课\设计\');I = double(img_name) / 255;% 获取图像大小[h,w,c] = size(I);%去雾系数w0 = ;img_size = w * h;%初始化结果图像dehaze = zeros(h,w,c);%初始化暗影通道图像win_dark = zeros(h,w);for i=1:h for j=1:wwin_dark(i,j)=min(I(i,j,:));%将三个通道中最暗的值赋给dark_I(i,j),显然,三维图变成了二维图endendwin_dark = ordfilt2(win_dark,1,ones(9,9),'symmetric');%计算大气亮度A,相关原理详见论文“Single Image Haze Removal Using Dark Channel Prior”dark_channel = win_dark;A = max(max(dark_channel));[i,j] = find(dark_channel==A);i = i(1);j = j(1);A = mean(I(i,j,:));%计算初始的transmission maptransmission = 1 - w0 * win_dark / A;%用guided filter对trasmission map做soft mattinggray_I = I(:,:,1);%这里gray_I 可以是RGB图像中任何一个通道p = transmission;r = 80;eps = 10^-3;transmission_filter = guidedfilter(gray_I, p, r, eps);t0=;t1 = max(t0,transmission_filter);for i=1:cfor j=1:hfor l=1:wdehaze(j,l,i)=(I(j,l,i)-A)/t1(j,l)+A;endendendfigure,imshow(I);title('去雾前')figure,imshow(dehaze);title('去雾后')%里面用到的两个函数如下:(这两个函数是何凯明guided filter中的,详细原理可以参考博客园中laviewpb的分析)function q = guidedfilter(I, p, r, eps)% GUIDEDFILTER O(1) time implementation of guided filter.%% - guidance image: I (should be a gray-scale/single channel image)% - filtering input image: p (should be a gray-scale/single channel image)% - local window radius: r% - regularization parameter: eps[hei, wid] = size(I);N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary = boxfilter(I, r) ./ N;mean_p = boxfilter(p, r) ./ N;mean_Ip = boxfilter(I.*p, r) ./ N;cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local = boxfilter(I.*I, r) ./ N;var_I = mean_II - mean_I .* mean_I;a = cov_Ip ./ (var_I + eps); % Eqn. (5) in the paper;b = mean_p - a .* mean_I; % Eqn. (6) in the paper;mean_a = boxfilter(a, r) ./ N;mean_b = boxfilter(b, r) ./ N;q = mean_a .* I + mean_b; % Eqn. (8) in the paper;endfunction imDst = boxfilter(imSrc, r)% BOXFILTER O(1) time box filtering using cumulative sum%% - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));% - Running time independent of r; % - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);% - But much faster.[hei, wid] = size(imSrc);imDst = zeros(size(imSrc));%cumulative sum over Y axisimCum = cumsum(imSrc, 1);%difference over Y axisimDst(1:r+1, :) = imCum(1+r:2*r+1, :);imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);%cumulative sum over X axisimCum = cumsum(imDst, 2);%difference over Y axisimDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);end
这个哈解决的,要求告诉我
蔡自兴教授已在国内外发表论文和科技报告等860多篇。2010年: Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26- 28, Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26-28, . Chen Baifan,Zi-Xing Cai, Zhi-Rong Zou. A Hybrid Data Association Approach for Mobile Robot SLAM. International Conference on Control, Automation and Systems, October 27-30, 2010, KINTEX, Gyeonggi-do, KOREA (Accepted).4. Guo Fan,Cai Zixing, Xie Bin, Tang Jin. Automatic Image Haze Removal Based on Luminance Component. The International conference on Signal and Image Processing (SIP 2010).May 2010 (Accepted).5. Linai. Kuang,Zixing. System based Redeployment Scheme for Wireless Sensor Networks[C].In proceeding of 1st IET International Conference on Wireless Sensor Network. Beijing, China, November,. Lingli YU,Zixing CAI, A Study of Multi-Robot Stochastic Increment Exploration Mission Planning [J]. Frontiers of Electrical and Electronic Engineering in China, (Received).7. Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 2010,10(2): 629–. LIU Xian-ru,CAI Zi-xing. Advanced obstacles detection and tracking by using fusing radar and image sensor data. International Conference on Control, Automation and Systems,2010/10/27,. Liu Xianru,Cai zixing. Advanced obstacles detection and tracking by using fusing Radar and Image Sensor Data[C]. International Conference on Control, Automation and Systems. (October 27-30,2010, KINTEX, Gyeonggi-do, KOREA).10. Ren Xiaoping,Zixing Cai. Kinematics Model of Unmanned Driving Vehicle. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: . Suqin Tang,Zixing Cai: Tourism Domain Ontology Construction from the Unstructured Text Documents. The 9th IEEE International Conference on Cognitive Informatics, Beijing, . Suqin Tang,Zixing Cai: Using the Format Concept Analysis to Construct the Tourism Information Ontology. The 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'10),Yantian, , . Tan Ping,Zixing Cai. An Adaptive Particle Filter Based on Posterior Distribution. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: . Wang Yong,Cai Zixing, Zhang Qingfu. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, Accept, regular . Wang Yong,Cai Zixing. Constrained evolutionary optimization by means of (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, in . Wang Yong, Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, (regular paper, Accepted).17. Xianru Liu,Zixing Obstacles Detection and tracking by Fusing Millimeter Wave Radar and Image Sensor Data,International IEEE Intl Coference on Control,Automation and Systems , Korea, 2010, 22:. Xie Bin, Fan Guo,Zixing Cai. Improved Single Image Dehazing Using Dark Channel Prior and Multi-Scale Retinex. 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010. (Accepted) .19. YU Ling-li,CAI Zi-xing, GAO Ping-an, LIU Xiao-ying. A spatial orthogonal allocation and heterogeneous cultural hybrid algorithm for multi-robot exploration mission planning. Journal of control theory and applications (Received) .20.蔡自兴,陈白帆,刘丽珏. 智能科学基础系列课程国家级教学团队的改革与建设. 计算机教育,2010,(127):40-44 .21.蔡自兴,任孝平,李昭.一种基于GPS/INS组合导航系统的车辆状态估计方法. , .蔡自兴。智能科学技术课程教学纵横谈. 计算机教育,2010,(127):.蔡自兴,蒋冬冬,谭平,安基程。中快速运动估计算法的一种改进方案;计算机应用研究2010,27(4):.蔡自兴; 任孝平; 邹磊; 匡林爱. 一种簇结构下的多移动机器人通信方法.小型微型计算机系统,2010,31(3):. 陈爱斌,蔡自兴.一种基于目标和背景加权的目标跟踪方法,控制与决策,2010,25(8):. 陈爱斌;蔡自兴; 文志强; 董德毅. 一种基于预测模型的均值偏移加速算法. 信息与控制 2010,39(2): . 陈爱斌; 董德毅;杨勇;蔡自兴. 基于目标中心定位和NMI特征的跟踪算法.计算机应用与软件,2010,27(4):. 陈白帆,蔡自兴,刘丽珏. 人工智能课程的创新性教学探索——人工智能精品课程建设与改革. 计算机教育,2010,(127):. 官东,蔡自兴,孔志周. 一种基于推荐证据理论的网格信任模型.系统仿真学报,2010,22(8):.郭璠,蔡自兴,谢斌, 唐琎. 图像去雾技术研究综述与展望. 计算机应用, 2010, 30(9):. 郭璠,蔡自兴, 谢斌, 唐琎. 一种基于亮度分量的自动图像去雾方法. 中国图象图形学报. 2010年3月(录用).32. 江中央,蔡自兴,王勇. 一种新的基于正交实验设计的约束优化进化算法. 计算机学报, 2010,33(5):. 江中央,蔡自兴,王勇.求解全局优化问题的混合自适应正交遗传算法.软件学报, 2010,21(6):. 匡林爱,蔡自兴. 基于遗传算法的无线传感器网络重新部署方法. 控制与决策,2010,25(9):. 匡林爱,蔡自兴.一种簇机构下的多移动机器人通讯方法.小型微型计算机系统.,2010,31(3):. 匡林爱,蔡自兴.一种带宽约束的无线传感器网络节点调度算法.高技术通讯,2010,20(3):. 刘丽珏,蔡自兴,唐琎. 人工智能双语教学建设. 计算机教育,2010,(127):. 刘献如,蔡自兴. 基于SAD与UKF-Mean shift的主动目标跟踪. 模式识别与人工智能,2010,23(5):. 刘献如,蔡自兴. 结构化道路车道线的鲁棒检测与跟踪. 光电子.激光,2010,21(12):. 刘献如,蔡自兴.UKF 与Mean shift 相结合的实时目标跟踪.中南大学学报,2009年录用.41. 刘晓莹;蔡自兴; 余伶俐; 高平安. 一种正交混沌蚁群算法在群机器人任务规划中的应用研究. 小型微型计算机系统, 2010,31(1):. 蒙祖强,蔡自兴,黄柏雄. 课程交叉教学在应用型人才培养中的实践探索. 计算机教育,2010,(127):. 潘薇;蔡自兴; 陈白帆. 复杂环境下多机器人协作构建地图的方法;四川大学学报(工程科学版) . 任孝平,蔡自兴,邹磊,匡林爱.“中南移动二号”多移动机器人通信系统.中南大学学报(自然科学版),2010,41(4):. 任孝平,蔡自兴.四种虚拟力模型在传感器网络覆盖中的性能分析.信息与控制,2010,39(4):. 任孝平;蔡自兴; 陈爱斌. 多移动机器人通信系统研究进展. 控制与决策 2010,(3): .唐素勤,蔡自兴,王驹,蒋运承: 基于gfp语义的描述逻辑系统FLE的有穷基,计算机研究与发展,2010,47(9):. 唐素勤,蔡自兴,王驹,蒋运承: 描述逻辑非标准推理, 模式识别与人工智能,2010,23(4):. 肖赤心,蔡自兴,王勇. 字典序进化算法用于组合优化问题. 控制理论与应用,2010,27(4):. 谢斌,蔡自兴. 基于MATLAB Robotics Toolbox的机器人学仿真实验教学. 计算机教育,2010,(127):. 余伶俐,蔡自兴,谭平,段琢华.基于多模态Rao-Blackwellized进化粒子滤波器的移动机器人航迹推算系统的故障诊断. 控制与决策,2010,25(12):. 余伶俐,蔡自兴,谭平,进化粒子滤波器对比研究及其在移动机器人故障诊断的应用. 信息与控制,2010,39(5):. 余伶俐,蔡自兴,肖晓明. 智能控制精品课程建设与教学改革研究. 计算机教育,2010,(127):. 余伶俐,焦继乐,蔡自兴. 一种多机器人任务规划算法及其系统实现. 计算机科学,2010,37(6):.周涛;蔡自兴。 信息审计中短消息中心实验环境的仿真[J].科学技术与工程 2010,10(6): . 邹磊,蔡自兴,任孝平.一种基于虚拟力的自组织覆盖算法.计算机工程,2010,36(14):93-95 .2009年:57. Gao Ping-an,Cai Zi-xing. Evolutionary Computation Approach to Decentralized Multi-robot Task Allocation. Proc. of the 5th International Conference on Natural Computation, IEEE Computer Society, 2009,. Wang Yong,Cai Zixing, Zhou Yuren. Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization, International Journal for Numerical Methods in Engineering, 2009, 77(11):. Wang Yong,Cai Zixing, Zhou Yuren, Fan Zhun. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Structural and Multidisciplinary Optimization, 2009, 37(1): . Wang Yong,Cai Zixing. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems, Frontiers of Computer Science in China, 2009,3(1):. Wang Yong,Cai Zixing. Constrained evolutionary optimization by applying (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, . Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering Soft Computing, 2010,10(2):629–. Liu Limei,Cai Zixing. An Improvement of Hough Transform for Building Feature . Limei Liu, Zixing Cai, Method Based on Uncertain Information of Sonar Sensor[C]. The 9th International Conference for Young Computer Scientists,2009,. YU Ling-li,CAI Zi-xing. Robot Detection Mission Planning Based on Heterogeneous Interactive Cultural Hybrid Algorithm. Proc. of the 5th International Conference on Natural . Ren Xiaoping,Cai Distributed Actor Deployment Algorithm for Maximum Connected Coverage in WSAN. Proc. of the 2009 Fifth International Conference on Natural Computation, 2009,. 王勇,蔡自兴,周育人,肖赤心.约束优化进化算法.软件学报, 2009,20(1): . 陈白帆,蔡自兴, 潘薇. 基于声纳和摄像头的动态环境地图创建方法.高技术通讯, 2009, 19(4): . 陈白帆,蔡自兴, 袁成. 基于粒子群优化的移动机器人SLAM方法研究.机器人, 2009, 31(6):. 高平安,蔡自兴. 多移动机器人任务负载均衡分组规划方法.高技术通讯,2009, 19(5):. 高平安,蔡自兴. 一种基于多子群的动态优化算法.中南大学学报(自然科学版) 2009, 40(3): . 刘献如,;蔡自兴. 一种基于Integral Imaging和与模拟退火相结合的深度测量方法研究. 系统仿真学报. 2009,21(8):2303~. 刘利枚,蔡自兴,潘薇.一种基于声纳信息的地图创建方法.计算机工程,2009,35(7):. 余伶俐,蔡自兴. 基于异质交互式文化混合算法的机器人探测任务规划.机器人.2009, 31(2):. 余伶俐,蔡自兴,刘晓莹,高平安. 均分点蚁群算法在群集机器人任务规划中的应用研究[J].高技术通讯. 2009,19(10),. 余伶俐,蔡自兴. 改进混合离散粒子群的多种优化策略算法.中南大学学报,2009, 40(4): . 余伶俐,蔡自兴,高平安,刘晓莹. 当代学习自适应混合离散粒子群算法研究. 小型微型计算机系统. 2009, 30(9):. 余伶俐,蔡自兴. 基于当代学习离散粒子群的多机器人高效任务分配算法研究. 计算机应用研究. 2009, 26(5):.蔡自兴; 谢斌; 魏世勇; 陈白帆. 《机器人学》教材建设的体会. 2009年全国人工智能大会(CAAI-13),北京:北京邮电大学出版社,252-255,2009年9月.80.蔡自兴,郭璠. 密码学虚拟实验平台的设计与实现.中国人工智能进展(2009),中国人工智能大会(CAAI-13)论文集,北京:北京邮电大学出版社,432-438,2009年9月.81.蔡自兴,任孝平,邹磊.分布式多机器人通信仿真系统.智能系统学报,2009,4(4): . 任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模.智能系统学报, 2009,4(6);.蔡自兴; 任孝平; 邹磊. 分布式多机器人通信仿真系统.智能系统学报, 2009,4(4);. 文志强;蔡自兴. 一种目标跟踪中的模糊核直方图. 高技术通讯, 2009,19(2):.刘星宝;蔡自兴. 种子检测器刺激-应答变异算法研究. 高技术通讯, 2009,19(3):. 刘星宝;蔡自兴. 负选择算法中的检测器快速生成策略. 小型微型计算机系统, . 刘星宝;蔡自兴. 异常检测系统的漏洞分析.中南大学学报(自然科学版), . 潘薇;蔡自兴; 陈白帆. 一种非结构环境下多机器人构建地图的方法. 高技术通讯, . 孔志周;蔡自兴; 官东. 两种模糊密度确定方法的实验比较. 小型微型计算机系统, . 江中央;蔡自兴; 王勇. 用于全局优化的混合正交遗传算法. 计算机工程, . 肖赤心;蔡自兴; 王勇; 周经野. 一种基于佳点集原理的约束优化进化算法. 控制与决策, 2009-02-15 .92. 官东;蔡自兴; 孔志周. 一种基于网格技术的HLA分布仿真实现方法. 系统仿真学报, 2009,21(5):.刘慧;蔡自兴; 王勇. 基于佳点集的约束优化进化算法. 系统仿真学报, 2009-03-20 .94. 潘薇;蔡自兴; 陈白帆. 基于遗传算法的多机器人协作建图方法. 计算机应用研究, . 任孝平;蔡自兴; 卢薇薇. 一种基于扫描相关度的LSB算法. 计算机应用, .胡强;蔡自兴. 一种基于改造时钟系统的Linux实时化方案. 计算机工程, . 袁成;蔡自兴; 陈白帆. 粒子群优化的同时定位与建图方法. 计算机工程, . 王勇;蔡自兴. “智能优化算法及其应用”课程教学的实践与探索. 计算机教育, . 任孝平;蔡自兴; 卢薇薇. 网络可重构的多机器人仿真系统. 计算机应用研究, . 袁湘鹏;蔡自兴; 刘利枚. 基于声纳的移动机器人环境建图的设计与实现. 计算机应用研究, . 官东;蔡自兴; 孔志周.网格服务本体匹配算法研究. 小型微型计算机系统, 2009,30(8):. 邹磊;蔡自兴; 任孝平. 基于簇的多移动机器人通信系统. 计算机应用研究, .蔡自兴. 从严施教,精心育才,培养高素质人才. 计算机教育, . 肖晓明; 旷东林;蔡自兴. 单亲遗传算法种群初始化方法分析. 电脑与信息技术, . 刘丽珏; 陈白帆; 王勇; 余伶俐;蔡自兴. 精益求精建设人工智能精品课程. 计算机教育, . 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法.中南大学学报(自然科学版), . 唐素勤;蔡自兴; 江中央; 肖赤心. 用于求解约束优化问题的自适应佳点集进化算法. 小型微型计算机系统,2009,第9期,.胡扬;桂卫华;蔡自兴. 多元智能算法控制结构综述. 计算机科学, .蔡自兴. 《混沌系统的模糊神经网络控制理论与方法》评介. 计算技术与自动化, . 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法. 2009年中国智能自动化会议论文集(第六分册)[中南大学学报(增刊)], . 于金霞;蔡自兴; 段琢华. 复杂地形下移动机器人运动学建模研究. 2009中国控制与决策会议论文集(1), . 刘献如,蔡自兴,杨欣荣. Integral Imaging与模拟退火相结合的深度测量方法研究. 系统仿真学报,2009,21(8):2303-2307.
姓名:张昊楠 学号:21021210691 学院:电子工程学院 【嵌牛导读】简要介绍暗通道先验理论基础 【嵌牛鼻子】图像处理 图像去雾 【嵌牛正文】: 暗通道先验理论是何凯明基于对大量户外无雾图像的观察所得到的统计规律:在大多数不包含天空区域的图像中,存在一些像素点,这些像素点中至少有一个通道的值有非常低的值。如果将无雾图像用J表示,那么图像的暗通道可以表示为: 式中Ω(x)表示以像素点x为中心的方形窗口。暗通道图像即为对原图作最小值滤波。 根据暗通道先验理论,在没有雾的户外图像中,除天空区域外,其暗通道趋向于零,即: 造成暗通道图像亮度低的原因一般包括图像中的阴影区域,颜色鲜艳的物体以及本身就比较暗的物体。 一般来说,一张含雾霾的图片往往比没有雾霾的图片更亮。在雾霾越厚的地方,其暗通道像素值越高。根据暗通道先验理论,我们可以认为,含雾图片中暗通道的亮度大致接近雾霾的厚度。 图1是一幅无雾图和它的暗通道图像,图2是一幅有雾图和它的暗通道图像。通过对比可以发现,图1的暗通道图几乎全部是黑色,图2的有雾图像白色区域明显较多,且原图中雾越浓,暗通道图像对应的区域越亮。雾天图像的暗通道图像亮度值可以很好地反映雾的浓度。根据这一点,我们可以通过暗通道图像来估计雾的浓度。 下面介绍如何利用暗通道先验理论对图像进行去雾: 在一些关于图像去雾的方法中,一般将图像中像素的最大值作为大气光的估计值。但在实际的图片中,最亮的像素点可能是白色的背景墙或者白色的汽车。所以利用原图最亮的像素点作为大气光的强度有时会产生较大误差。 如第1节介绍的那样,雾霾图像暗通道亮度近似等同于雾霾厚度,所以可以利用图像的暗通道的亮度来更准确估计整体大气光。整体大气光的估计方法如下: 首先取暗通道图像中千分之一个最亮的像素点;然后找到这些像素点对应在原彩色图像中的位置;最后,在原彩色图像中的这些位置里面找到亮度最大的点,作为大气光强的估计值。实际操作中,这种方法比“最亮像素法”更具有更高的稳定性。 对大气散射模型变形,有 假设在区域 中,透射率t(x)是一个常数,记为 。对上式两端作两次最小值滤波,第一次对等式两端R,G,B三个通道取最小值,第二次滤波对以目标像素点为中心的方形区域内取最小值作为该像素点的值,公式表示如下所示: 根据暗通道先验理论: 将2-3式代入2-2式,可以求得透射率 实际生活中,即使是在晴朗的天气下也会不可避免地在空气中存在一些杂质分子。而且,雾的存在可以帮助我们更好获取景深信息,这种现象就是我们所说的空间透视。如果将雾完全除掉的话,景深信息也会丢失,这样一来,复原出的图像会显得不自然。所以在实际操作时,我们会选择保留一部分覆盖远景的雾。为此,引入参数,对2-4式作出调整,得到修正后透射率的表达式: w越大,表示去雾效果越好。当w=0时,透射率恒为1,复原结果图即为原图;当w=1时,表示雾霾全部去除。这里,为保留一定的景深信息,令w=。 根据上述方法,我们已经求出了大气光强和透射率信息,对大气散射模型作恒等变形,利用(2-6)式在图像的R,G,B三个通道分别进行计算即可得到复原后的无雾图像。 透射率t(x)是一个介于0和1之间的值,当t(x)的某个值为0时,根据上述公式,所得到的图像对应点的像素值则趋向于无穷大,这是我们不希望看到的。所以,为了避免这种情况的发生,我们引入限制透射率阈值的参数 ,以此来控制透射率的下限,则修正后的表达式为:复原效果图: 从图中可以看出,虽然利用上述方法实现了去雾的效果,但效果并不理想。在天安门与天空连接的边缘部分,会有明显的带状区域产生,这种现象我们称之为光晕效应。经过对比发现,滤波窗口的半径越大,光晕效应越明显。这是因为,我们最初的假设是透射率 在以某一像素点为中心的 为半径的区域内是常数,这种假设在图像的平滑区域是成立的,但在景深突变的边缘处,这种假设并不成立。在边缘部分的透射率信息和实际有一定的误差,我们称这个透射率是粗糙的。因此,为取得更加理想的去雾效果,需要进一步对计算出的透射率 进行细化处理。 在后续的文章中,我们将会介绍一些方法对透射率进行细化,用以抑制光晕效果的产生。 K. He, J. Sun and X. Tang, "Guided Image Filtering,"in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, , pp. 1397-1409, June 2013, doi: .
336 浏览 2 回答
228 浏览 3 回答
305 浏览 5 回答
88 浏览 4 回答
314 浏览 2 回答
195 浏览 7 回答
177 浏览 5 回答
229 浏览 3 回答
337 浏览 3 回答
311 浏览 8 回答
246 浏览 3 回答
246 浏览 5 回答
280 浏览 3 回答
210 浏览 5 回答
355 浏览 3 回答