很多书本上和科研论文中的复杂算法,在这篇文章中总结在研究,阅读,编码和调试时积累的大量经验。很显然,这篇文章主要集中在和计算机科学相关的研究领域中。 然而,你也可以在其他任何领域的论文中使用下面提及的准则。1. – 开始之前在你开始阅读一篇论文和实现它之前,有几个你需要注意的地方。并请确保每次你要开始类似的项目之前,都仔细的注意过这几个方面。 – 看看是不是已经有开源软件实现过除非你是为了纯粹的学习目的而去实现一篇文论中的算法, 否则你不必一定要实现它。实际上,你所需要的不是自己去实现它的过程,而是已经实现了这个算法的代码。所以在你开始编码之前,你应该花一些时间去找找网上是不是已经有实现了这个算法的开源软件。想想你是愿意花两天时间去找到已经完成的代码,还是浪费两个月的时间去实现一个别人已经实现的了算法呢? – 用最简单的方法达到你的目的你要先搞清楚你想要达到的目标是什么,以及是不是有简单的方法已经可以达到你的目标。 或许你可以尝试使用另外的技术,即使它只能达到你80%的目标,但它不需要你去实现一篇论文。然后你可以再花几天的时间去尝试是不是可以用开源软件运行起来。关于这个更多的详情,请参考我的另外一篇文章 The 20 / 80 Productivity – 注意软件的专利如果你再美国, 你需要注意软件的专利问题。有一些论文是注册了专利的,你可能因为在商业软件中使用了它的算法而惹上麻烦。 – 关注更多该领域的论文如果你正在研究一篇关于在计算神经学领域中使用支持向量机(SVM)的论文的话,那你应该再读一些关于机器学习以及其他可替代支持向量机(SVM)的分类算法的介绍。同时,你还可以读一些关于计算神经学领域的文章,看看学术界正在研究什么. – 保持积极性如果你还没有实现过一篇论文或你正在研究一个新领域内的论文,这样的阅读研究是很困难的。不管发生什么,不要让那些复杂的数学公式吓到你。而且,不要去担心进度的问题,即使你感觉理解这篇论文要比你预计的要慢很多, 坚持做下去你会发现你慢慢的就理解了这篇论文中所要表述的概念。