据学术堂了解,一篇完整、优秀的毕业论文分为:摘要、绪论、文献综述、研究假设、论证过程、研究结论、总结与展望,这七个部分:一、摘要摘要是一篇论文的浓缩和精华,用简短的话语向读者交代这篇论文讲了什么.简单来说,主要包括有目的、方法、结果和结论.中文摘要最多不超过400字,外文摘要不超过250个实词.二、绪论这一部分主要是交代自己的选题背景、研究目的与研究意义.看过大量的文献后,你就会对研究背景、研究意义、研究现状有所了解.文献的搜索和整理是一个繁琐的过程,同学们可以按照高影响因子、近几年、高相关度的原则筛选文献,从读过的文献中选出十篇高相关的文献,仔细阅读他们的绪论部分找出共同点和差异.三、文献综述写论文与写其他文章最大的不同就是你每一句观点和结论都必须有出处,要么通过你自己的实验论证,要么需要有前人的研究成果作为支持.因此这一部分的内容相当于盖楼的地基,是文章的基石.这一部分是前人研究基础,很大部分是引用文献,因此这一部分更多不是自身原创性思想,引用文献时注意参考学校的格式,这部分的工作在论文的准备工作中就可以完成,在撰写时根据自己的研究问题有效的筛选并分类陈述.四、研究假设研究假设是在上一章的理论基础上,论述你提出了怎样的研究假设,也是你整篇论文的核心观点.研究假设也是你对所研究问题的猜测,需要文章后续进行论证.五、论证过程实证部分就是在你提出研究假设的基础上,对收集来的数据进行分析的过程,以验证你的假设是否成立.在阅读大量文献时,我们可以积累对于这类研究课题的实证方法,并可以结合提出自己的创新方法,采用比前人的研究更新更广的数据.六、研究结论这一部分其实在整个论文中是极为重要的,尤其是对于金融学来说,因为他不仅仅阐述你的研究过程得出了什么样的结论,你再第三章中提到的假设哪些成立或者是不成立?而且关系到你研究成果或论文的成果到底有什么意义,有没有适用价值.结论体现了论文的价值,要注意结论的全面准确,相关的对策建议适当精简.七、研究不足与展望这一部分更多是出于文章完整性的考虑,因为每一篇论文都是不完美的,当你写作的时候你一定能找出一万个缺陷,所以最后自我批评的时候就挑几个不那么原则性的问题说一说,比如:调研对象范围不够广,理论模型可以再细化等等……希望后人可以继续研究等简单展望一下.这里可以参考借鉴一些别人的文献都是怎么样自我批评和展望的,基本上都是一个套路.
金融学分析论文范文
论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。下面是我精心整理的金融学分析论文范文,欢迎大家分享。
摘要:
自从2002年行为金融学家Kahneman获得诺贝尔经济学奖以后,国内对行为金融学的研究不断涌现。就当前我国证券投资者行为的行为金融学研究进行了总结分析,并对行为金融学的研究作了展望。
关键词:
行为金融学;有限套利;羊群行为
行为金融学(BehavioralFinance)是金融学的最新研究前沿,它突破了传统金融学“理性人”、完全套利和EMH的假设,从投资者的实际决策心理出发,重新审视主宰金融市场的人的因素对市场的影响,使研究更接近实际。该理论在上世纪80至90年代得到迅速的发展。行为金融学家美国普林斯顿大学的Kahneman获得2002年度的诺贝尔经济学奖,从而使得这一理论受到全球金融界的关注。
国外行为金融学的发展,引起我国学者的高度重视,1999年北京大学刘力教授在《经济科学》第三期发表的《行为金融理论对效率市场假说的挑战》一文,是我国最早系统介绍行为金融理论的文章。2002年行为金融学被诺贝尔经济学奖的肯定后,国内掀起了行为金融学介绍和研究的热潮。2003年11月29日,在南京大学举办了全国首次行为金融学与资本市场学术研讨会,将国内行为金融学的研究推向了高潮。
1、对投资者的心理研究
金晓斌、唐利民(2000)统计分析显示,在影响股市异常波动的因素中政策性因素是最重要的因素,其影响远大于市场因素、扩容因素、消息因素和其他因素。孙培源、施东晖(2002)通过对1992-2002年初上海股市52次异常波动的分析表明,由政策性因素引起的异常波动达30次之多,而且当月出台的政策对该月的股价波动具有显著的影响,直接影响投资者入市的意愿和交投的活跃程度,中国个体证券投资者存在政策依赖性偏差。利好政策的颁布导致在相当长的交易周期内投资者交易频率明显上升,加剧了投资者的过度自信倾向,而利空政策出台却导致在较长的交易周期内投资者的交易频率大幅度下降,表现出较强的过度恐惧心理。这种强烈的“政策依赖”倾向是中国证券市场有中国特色的一种现象。张华庆(2003)认为中国证券投资者的行为有明显的过度反应的倾向,而深层次的根源是投资者的.种种心理偏差,其结果将导致市场会对信息或政策的反应超过应有的幅度,加剧了市场的波动性,导致市场风险的放大。这些心理偏差包括过度自信、过度乐观、赌博心理、暴富心理、从众心理以及过度恐惧心理。
2、对投资者有限套利行为的研究
现代金融理论普遍认为,当金融资产的价格存在误定时,众多的“理性套利者”就会在相应低估的资产上“做多”,而在高估的资产上“做空”,不但可以最终消除价格误定,而且可以获得无风险利润,从而使市场保持有效性。应该说套利机制是金融市场的重要机制,套利行为的存在具有“价值发现”的功能,它推动着资产价格向基本价值的回归。但是,中国的证券市场有以下特征:信息的获得是有成本的;信息的传递存在时间与空间上的差异,交易者并不能同时获取信息;交易者的行为是存在着差异的,并非都是理性的;交易者所持有的信息是不对称的。因此,机构投资者凭借优势,往往扮演着理性套利者的角色,而个人投资者却因先天不足沦为噪声交易者。张华庆(2003)认为,在中国证券市场中,当理性套利者进行套利时,不仅要面对基础性因素变动的风险,还要面对噪声交易者非理性预期变动的风险。在噪声交易者的影响下,不但理性套利者的收益将受到影响,甚至会导致越来越多的基金经理放弃原来奉行的成长型或价值型投资理念,在某种程度上蜕化为“追逐热点、短线运作”的投资方式。
3、对投资者羊群行为的研究
“羊群行为”(HerdingBehavior)是信息连锁反应导致的一种行为方式,当个体依据其它行为主体的行为而选择采取类似的行为时就会产生“羊群行为”。换而言之,当“羊群行为”产生时,个体趋向于一致行动,即所谓的“赶潮流(Bandwagon)”,这时个人往往放弃自己所掌握的信息和信号而附和他人的行为,虽然他们所掌握的信息和信号,按理性分析可能显示他们应采取另外一种完全不同的行为。宋军、吴冲锋(2001)使用个股收益率的分散度指标,使用市场公开的价格数据,对于我国证券市场的羊群行为进行了实证研究。结果发现我国证券市场的羊群行为程度高于美国证券市场的羊群行为程度,在市场收益率极低时的羊群行为程度远远高于在市场收益率极高时的羊群行为程度,这个结果可以用期望理论中决策者对于损失、收益的不同态度来解释。孙培源、施东晖(2002)根据资本资产定价模型(CAPM)建立了较为灵敏的检验羊群行为的回归模型,并据此对我国股市进行了实证检验。结果表明:在政策干预频繁和信息不对称的严重的市场环境下,我国股市存在一定程度的羊群行为,并导致系统风险在总风险中占有较大比例。从投资运作层面来看,羊群行为将削弱组合投资分散风险的效果,特别是在市场发生大幅度涨跌时,通过多元化投资分散风险的效果将极为有限。就政策层面而言,羊群行为意味着投资者的买卖决策并非基于理性的决策过程,因此股价极有可能偏离其均衡价值,从而破坏了市场的价格发现功能和资源配置功能。常志平(2002)采用横截面收益绝对差(CrossSectionalAbsoluteDeviationofReturns,CSAD)方法,对我国股票市场是否存在“羊群行为”进行了实证检验。结果发现:在上涨行情中,我国深圳证券市场与上海证券市场均不存在“羊群行为”;但在下跌行情中,深圳证券市场与上海证券市场均存在“羊群行为”。并且深圳证券市场比上海证券市场具有更多的“羊群行为”。张华庆(2003)指出“羊群行为”对中国证券价格会产生一定的影响:由于“羊群行为”者往往抛弃自己的私人信息追随别人,这会导致市场信息传递链的中断;如果“羊群行为”超过某一限度,将诱发另一个重要的市场现象——过度反应的出现,使中国证券市场的稳定性下降;所有“羊群行为”的发生基础都是信息的不完全性,因此,一旦市场的信息状态发生变化,如新信息的到来,“羊群行为”就会瓦解,这意味着“羊群行为”具有不稳定性和脆弱性。
4、行为金融学在我国的应用性研究展望
对实证研究结果的应用
从以上可以看出证券市场的参与者存在一定的非理性,而且市场也不是完全有效的。如何克服这些非理性,使投资者能在并非完全有效的市场生存,是市场参与者最想解决的问题之一。
对参与者的心理学实证研究
从以上可以看出针对市场参与者的心理学实证研究,一般还是基于行为金融学的旧有框架中的心理学理论,今后的研究应该更多地结合中国文化、国情或者利用更多心理学的最新研究成果,只有这样的研究才更适合中国的现实。
在金融产品的设计和销售上的应用研究
随着我国的金融改革进一步深入,出现了越来越多的金融产品。金融产品的开发和销售变得也越来越重要。其实,人们对于经济学和心理学相结合的研究最早就是从消费者心理学开始的,隶属于市场营销学中的消费者行为学是一门理论系统完整的科学。其中对消费者的调查、研究方法完全可以借鉴与行为金融学的实证方法相结合用以来研究金融产品的购买者的行为,根据投资者的不同偏好来设计金融产品,制定营销战略,从而为金融产品的开发和销售打出一片新天地。
参考文献
[1]金晓斌,唐利民.政策与股票投资者博弈分析[J].海通证券研究报告,2000.
[2]宋军,吴冲锋.基于分散度的金融市场的羊群行为研究[J].经济研究,2001,(11).
[3]孙培源,施东晖.基于CAPM的中国股市羊群行为研究——兼与宋军、吴冲锋先生商榷[J].经济研究,2002,(2).
[4]常志平.基于上证30及深圳成指的我国股票市场“羊群行为”的实证研究[J].预测,2002,(3).
金融类毕业论文参考文献
参考文献就是写论文的时候参考过的书籍或网站,直接关系到论文的分数和质量高低。以下是我为您整理的金融类毕业论文参考文献,希望能提供帮助。
篇一 :参考文献
[1] 母宇.中国股票市场与全球主要股票市场联动性研究,[C].西南民族大学:2011.
[2] 于会鹏.中国股票市场板块及其与国外主要市场间的联动性实证研究,[C].理工大学:2009
[3] 陈志宁.中外股票市场的联动分析,[C].农业大学:2009.
[4] 汪波.股票市场波动性网络及其应用[C]华南理工,2012
[5] 徐晓萍. 金融危机下证券网络的复杂性特征研究[C]华东师范大学,2013
[6] 陈俊华.中国股票市场网络模型动态研究[C]浙江工业大学,2012
[7] 兰旺森,赵国浩. 应用复杂网络研究板块内股票的强相关性,[J].中山大学学报:2010(6).20-23
[8] 李耀华,姚洪兴.股票市场网络的稳定性研究,[M].江苏省系统工程学会第十一届学会:2012.
[9] 陈花.基于复杂网络的股票之间有向相关性研究,[C].北京邮电大学:2012.
[10] 陈辉煌,高岩,基于复杂网络理论的证券市场网抗毁性分析[J],金融理论与实:2008(6)154-156
[11] 万阳松,陈忠基. 加权股票网络模型[J].复杂系统与复杂性科学,2005,1(5) :21-27
[12] 李平,汪秉宏.证券指数的网络动力学模型[J].系统工程,2006,24(3):73-77
[13] TianQiu, Bo Zheng,Guang Chen. Financial networks with static anddynamic thresholds,[J]. New Journal of Physics:2010(12).136-138
[14] Nicola Cetorelli, Stavros Peristiani. Prestigious stock exchanges: A network analysis of international financial centers,[J]. Journal of Banking & Finance:2013(37).21-24
[15] Ram Babu Roy, Uttam Kumar Sarkar. Identifying influential stock indices from global stockmarkets: A social network analysis approach,[J].Procedia Computer Science:2011(5).10-13
[16] Xiao fan Liu, Chi k. Complex Network Perspective to Volatility in Stock Markets [J]. International Symposium on Nonlinear Theory and its Applications:2010(9).12-15
[17] Simutis R, stock trading systems using fuzzy-neural networks andevolutionary programming methods[J]. Self Formation Theory And ,(97).59-63
[18] Dong-Ming Song, Michele Tumminello, Wei-Xing Zhou, Rosario N. Mantegna. Evolution of worldwide stock markets, correlation structure and correlation basedgraphs,[J]. PACS:2011(3).90-92
[19] Xiangyun Gao, Haizhong An, Weiqiong Zhong. Features of the Correlation Structure of Price Indices,[J]. PLOS ONE:2013(4).34-36
[20] MarekGa??zka. Characteristics of the Polish Stock Market correlations,[J]. International Review of Financial Analysis:2011(1-5).
[21] 杨治辉,贾寒梅.股票收益率相关性的网络结构分析,[M].中国控制学会:2011.
[22] 周艳波,蔡世民,周佩玲.金融市场的无标度特征研究,[J].中国科学技术大学学报:2009(8).19-22
[23] Barabasia L, Albert R, Jeong H. Mean-field theory for scale-freerandom networks[J].Physica A, 1999( 272).173-187
[24] 李辉,赵海,徐久强,李博,李鹏,王家亮. 基于k-核的大规模软件核心框架结构抽取与度量,[J].东北大学学报:2010(11).345-347
[25] 李辉,赵海.基于k-核的大规模软件宏观拓扑结构层次性研究,[J].电子学报:2010(6).134-136
[26] 李备友,刘思峰. 网络化市场结构下证券市场传闻的扩散规律研究,[J].华东经济管理:2012(12).90-92
篇二:参考文献:
[1]袁申国,陈平,刘兰凤,. 汇率制度、金融加速器和经济波动[J]. 经济研究,2011,(1).
[2]黄志刚,. 货币政策与贸易不平衡的调整[J]. 经济研究,2011,(3).
[3]George J. Gilboy,钟宁桦,. 度量中国经济:购买力平价的适当应用[J]. 经济研究,2010,(1).
[4]万晓莉,霍德明,陈斌开,. 中国货币需求长期是否稳定?[J]. 经济研究,2010,(1).
[5]裘骏峰,. 投机资本流入、升值预期和最优升值路径[J]. 经济研究,2010,(2).
[6]张屹山,孔灵柱,. 基于权力范式的汇率决定研究[J]. 经济研究,2010,(3).
[7]李成,王彬,马文涛,. 资产价格、汇率波动与最优利率规则[J]. 经济研究,2010,(3).
[8]刘尧成,周继忠,徐晓萍,. 人民币汇率变动对我国贸易差额的动态影响[J]. 经济研究,2010,(5).
[9]黄志刚,陈晓杰,. 人民币汇率波动弹性空间评估[J]. 经济研究,2010,(5).
[10]路继业,杜两省,. 货币政策可信性与汇率制度选择:基于新政治经济学的分析[J]. 经济研究,2010,(8).
[11]卞世博,贾德奎,. 后金融危机背景下的中国经济运行风险管理——第四届中国立信风险管理论坛综述[J]. 经济研究,2010,(12).
[12]赵志君,陈增敬,. 大国模型与人民币对美元汇率的评估[J]. 经济研究,2009,(3).
[13]伍戈,. 中国的货币需求与资产替代:1994—2008[J]. 经济研究,2009,(3).
[14]王晋斌,李南,. 中国汇率传递效应的实证分析[J]. 经济研究,2009,(4).
[15]张瀛,. 汇率制度、经济开放度与中国需求政策的有效性[J]. 经济研究,2008,(3).
[16]中国经济增长与宏观稳定课题组,张平,刘霞辉,张晓晶,汪红驹,. 外部冲击与中国的通货膨胀[J]. 经济研究,2008,(5).
[17]唐翔,. “富人社区效应”还是巴拉萨-萨缪尔森效应?——一个基于外生收入的实际汇率理论[J]. 经济研究,2008,(5).
[18]龚刚,高坚,何学中,. 汇率制度与货币政策——发展中国家和小国经济的思考[J]. 经济研究,2008,(6).
[19]管汉晖,. 浮动本位兑换、双重汇率与中国经济:1870—1900[J]. 经济研究,2008,(8).
[20]施建淮,傅雄广,许伟,. 人民币汇率变动对我国价格水平的传递[J]. 经济研究,2008,(7).
篇三:参考文献:
[1] 方毅,桂鹏. 亚太地区股票市场的联动程度—基于次级贷冲击的`研究[J]世界经济研究,2010(8).27-30
[2] BarabásiA L, Albert R. Emergence of scaling in random networks[J].Science, 1999(286). 509-512
[3] Kim H I network in stock market[J].J KorPhys Soc,2002,40(6):105-108.
[4] Newman M E structure and function of complex networks[J].SIAM Review,2003(3).167-256
[5] Jukka-Pekka Onnela, Jari Saram?ki, Kimmo Kaski. A comparative study of social network models: Network evolution models and nodal attribute models[J]. Social Networks:2009(4)13-16
[6] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006(1).9-14.
[7] 任卓明,刘建国,邵凤,胡兆龙,郭强. 复杂网络中最小K-核节点的传播能力分析,[J].物理学报:2011(7).90-93
[8] 韩定定,复杂网络的拓扑、动力学行为及其实证研究,华东师范大学无线电物理博士论文[C],2007
[9] Simutis R, stock trading systems using fuzzy-neural networks andevolutionary programming methods[J].Self Formation Theory And (97)59-63
[10] Xiao fan Liu, Chi k. Network Perspective of World Stock Markets:synchronization and volatility,[J]. International Journal of Bifurcation and Chaos:2012(6).62-66
[11] Ram Babu Roy, Uttam Kumar Sarkar. Capturing Early Warning Signal for Financial Crisis from the Dynamics of Stock Market Networks: Evidence from North American and Asian Stock Markets[J].Journal of Indian Institute of Management Calcutta:2009(8).57-59
[12] 李耀华,姚洪兴.金融危机下股票市场网络的结构特性研究[J].信息工程学院学报,2010(1).23-26
[13] Benjamin M. Tabak, Thiago R. Serra, Daniel O. Cajueiro. Topological properties of stockmarket networks:The case of Brazil[J]. Physica ,2010(389).3240-3249
[14] Chi ,JingLiu,Francis C, M. Lau. A network perspective of stock market[J].Journal ofEmpirica ,4(17).659-667
[15] 闵志锋.上海证券市场的复杂网络特性分析 [J].东北大学学报 (自然科学版).2007 (7).1053-1056
[16] 黄玮强,姚爽,中国股票关联网络拓扑性质与聚类结构分析[J],管理科学:2008(3).92-95
[17] 高雅纯,魏宗文,汪秉宏.Dynamic Evolution of Financial Network and Its Relation to Economic Crises,[J].World Scientific:2013(2).142-141
[18] 陈守东,韩广哲,荆伟.主要股票市场指数与我国股票市场指数间的协整分析,[J].数量经济技术经济研究:2003(5).35-37
[19] 文圭炫,洪正孝.太平洋地区国家的联动性,[J].商务管理研究:2003(2).111-113
[20] ,Who moves the Malaysian stock market-the Japan[J],International Journal of Business,2006(8)367-406
[21]Terence,Tai-Leung Chong,Ying-Chiu Wong,Isabel,Kit-Ming Yan,Internationallinkagesof the Japanese stock market,Japan and the World Economy,2007(20)773-786
[22] 周珺. 我国大陆股票市场与周边主要股票市场的联动分析[J]企业经济,2007(1).77-79
[23] Woo-Sung Jung ,SeungbyungChae, Jae-Suk Yang,Hie-Tae Moon. Characteristics of the Korean stock marketcorrelations,[J]. Elsevier Science:2008(2).90-93
[24] Sunil Kumar, NiveditaDeo. Correlation and network analysis of global financial indices,[J]. American Physical Society:2012(8).21-23
篇四:参考文献
[1] Michael Grahama,JarnoKiviahob,JussiNikkinenb, Mohammed Omranc. Global and regional co-movement of the MENA stockmarkets,[J]. Journal of Economics and Business:2013(1). 165-167
[2] 高莹,靳莉莉.沪深300指数与世界主要股票指数的关联性分析[J].金融管理,2008(2). 3-8.
[3] Hwahsin Cheng, John L. Glascock. Stock Market Linkages Before and After the AsianFinancial Crisis: Evidence from Three Greater ChinaEconomic Area Stock Markets and the US,[J]. Pacific Basin Financial Markets and Policies:2006(2).125-127
[4] market linkages and the global financial crisis,[J].Journal of University of Santo Tomas:2009(8).278-280
[5] Ugur Ergun. How does Turkish stock market respond to the externalshocks Pre- and post- crises analyses,[J]. African Journal of Business Management:2012(2).34-37
[6] 赵勇. 金融危机背景下中美欧股票市场联动性研究[C]上海社会科学院,2012(5).76-79
[7] 洪天国. 欧洲股票市场与中国股票市场之间的波动溢出效应研究[C]江西财经大学,2013(1).29-34
[8] 金融市场稳定性的判别与度量[C]山西大学,2012(2).192-196
[9] 陈守东,陈雷,刘艳武.中国沪深股票市场收益率及波动性相关分析,[J].金融研究:2003(7).230-235
[10] 刘存绪.论中国股票市场的国际化,[J].资本市场:2000(4).30-32
245 浏览 2 回答
170 浏览 3 回答
187 浏览 7 回答
259 浏览 3 回答
136 浏览 3 回答
334 浏览 2 回答
173 浏览 3 回答
202 浏览 3 回答
293 浏览 3 回答
165 浏览 3 回答
169 浏览 3 回答
190 浏览 3 回答
234 浏览 2 回答
81 浏览 5 回答
113 浏览 6 回答