搬运单元主要由I/O接线端口、无杆气缸、提取模块、气源处 理组件等部件组成。 1. 提取模块 提取模块由一个杆不回转的扁活塞气缸和一个气动夹爪所组 成。杆不回转的气缸能保证气动夹爪到夹取工件时位置不会 偏转。
气动执行元件和控制元件气动执行元件是一种能量转换装置, 它是将压缩空气的压力能转化为机械能, 驱动机构 实现直线往复运动,摆动,旋转运动或冲击动作.气动执行元件分为气缸和气马达两大类. 气缸用于提供直线往复运动或摆动, 输出力和直线速度或摆动角位移. 气马达用于提供连续 回转运动,输出转矩和转速. 气动控制元件用来调节压缩空气的压力流量和方向等, 以保证执行机构按规定的程序正 常进行工作.气动控制元件按功能可分为压力控制阀,流量控制阀和方向控制阀. 第一节 气缸 一,气缸的工作原理,分类及安装形式 气缸的工作原理, 1 2 14 3 4 5 6 13 12 11 10 9 8 7 1.气缸的典型结构和工作原理 图 13-1 普通双作用气缸 1,3-缓冲柱塞 2-活塞 4-缸筒 5-导向套 6-防尘圈 7-前端盖 8-气口 9- 传感器 10-活塞杆 11-耐磨环 12-密封圈 13-后端盖 14-缓冲节流阀 以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如图 13-1 所示.它由缸筒,活塞,活塞杆,前端盖,后端盖及密封件等组成.双作用气缸内部被活塞 分成两个腔.有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔. 当从无杆腔输入压缩空气时, 有杆腔排气, 气缸两腔的压力差作用在活塞上所形成的力 克服阻力负载推动活塞运动, 使活塞杆伸出; 当有杆腔进气, 无杆腔排气时, 使活塞杆缩回. 若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动. 2.气缸的分类 气缸的种类很多,一般按气缸的结构特征,功能,驱动方式或安装方法等进行分类.分 类的方法也不同.按结构特征,气缸主要分为活塞式气缸和膜片式气缸两种.按运动形式分 为直线运动气缸和摆动气缸两类. 3.气缸的安装形式 气缸的安装形式可分为 1)固定式气缸 气缸安装在机体上固定不动,有脚座式和法兰式. 2)轴销式气缸 缸体围绕固定轴可作一定角度的摆动,有 U 形钩式和耳轴式. 3)回转式气缸 缸体固定在机床主轴上,可随机床主轴作高速旋转运动.这种气缸常 用于机床上气动卡盘中,以实现工件的自动装卡. 4)嵌入式气缸 气缸缸筒直接制作在夹具体内. 二,常用气缸的结构原理 1.普通气缸 包括单作用式和双作用式气缸.常用于无特殊要求的场合. 图 13-2 为最常用的单杆双作用普通气缸的基本结构,气缸一般由缸筒,前后缸盖,活 塞,活塞杆,密封件和紧固件等零件组成. 缸筒 7 与前后缸盖固定连接.有活塞杆侧的缸盖 5 为前缸盖,缸底侧的缸盖 14 为后缸 盖.在缸盖上开有进排气通口,有的还设有气缓冲机构.前缸盖上,设有密封圈,防尘圈 3, 同时还设有导向套 4,以提高气缸的导向精度.活塞杆 6 与活塞 9 紧固相连.活塞上除有密 封圈 10,11 防止活塞左右两腔相互漏气外,还有耐磨环 12 以提高气缸的导向性;带磁性开 关的气缸,活塞上装有磁环.活塞两侧常装有橡胶垫作为缓冲垫 8.如果是气缓冲,则活塞 两侧沿轴线方向设有缓冲柱塞,同时缸盖上有缓冲节流阀和缓冲套,当气缸运动到端头时, 图 13-2 普通双作用气缸 1,13-弹簧挡圈 2-防尘圈压板 3-防尘圈 4-导向套 5-杆侧端盖 6-活塞杆 7-缸筒 8-缓冲垫 9-活塞 10-活塞密封圈 11-密封圈 12-耐磨环 14-无杆 侧端盖 缓冲柱塞进入缓冲套,气缸排气需经缓冲节流阀,排气阻力增加,产生排气背压,形成缓冲 气垫,起到缓冲作用. 2.特殊气缸 图 13-3 1-缸体 薄膜气缸 4-活塞杆 2-膜片 3-膜盘 为了满足不同的工作需要,在普通气缸的基础上,通过改变或增加气缸的部分结构,设 计开发出多种特殊气缸. (1) 薄膜式气缸 图 13-3 为膜片气缸的工作原理图. 膜片有平膜片和盘形膜片两种 一 般用夹织物橡胶,钢片或磷青铜片制成,厚度为 5~6mm (有用 1~2mm 厚膜片的) . 图 13-3 所示的膜片气缸的功能类似于弹簧复位的活塞式单作用气缸, 工作时, 膜片在 压缩空气作用下推动活塞杆运动.它的优点是:结构简单,紧凑,体积小,重量轻,密封性 好,不易漏气,加工简单,成本低,无磨损件,维修方便等,适用于行程短的场合.缺点是 行程短,一般不趁过 50mm.平膜片的行程更短,约为其直径的 1/10. (2) 磁性开关气缸 磁性开关气缸是指在气缸的活塞上安装有磁环, 在缸筒上直接安装 磁性开关,磁性开关用来检测气缸行程的位置,控制气缸往复运动.因此,就不需要在缸筒 上安装行程阀或行程开关来检测气缸活塞位置,也不需要在活塞杆上设置挡块. 其工作原理如图 13-4 所示. 它是在气缸活塞上安装永久磁环, 在缸筒外壳上装有舌簧 开关.开关内装有舌簧片,保护电路和动作指示灯等,均用树脂塑封在一个盒子内.当装有 永久磁铁的活塞运动到舌簧片附近,磁力线通过舌簧片使其磁化,两个簧片被吸引接触,则 开关接通.当永久磁铁返回离开时,磁场减弱,两簧片弹开,则开关断开.由于开关的接通 或断开,使电磁阀换向,从而实现气缸的往复运动. 图 13-4 磁性开关气缸 1-动作指示灯 2-保护电路 3-开关外壳 4-导线 5-活塞 6-磁环 7-缸筒 8-舌簧开关 气缸磁性开关与其它开关的比较见表 3-1. 表 3-错误!未定义书签. 气缸磁性开关与其它开关的比较 开关形式 控制原理 成本 调整安装复杂性 (3)带阀气缸 带阀气缸是由气缸, 磁性开关 磁场变化 低 方便,不占位置 换向阀和速度控制 阀等组成的一种组 低 麻烦,占位置 合式气动执行元件. 行程开关 机械触点 它省去了连接管道 接近开关 阻抗变化 高 麻烦,占位置 和管接头, 减少了能 量损耗, 具有结构紧 凑,安装方便等优 点. 带阀气缸的阀有 光电开关 光的变化 高 麻烦,占位置 电控,气控,机控和 手控等各种控制方 式.阀的安装形式有安装在气缸尾部,上部等几种.如图 13-5 所示,电磁换向阀安装在气 缸的上部,当有电信号时,则电磁阀被切换,输出气压可直接控制气缸动作. 图 13-5 带阀组合气缸 1-管接头 2-气缸 3-气管 4-电磁换向阀 5-换向阀底板 6-单向节流阀组合 件 7-密封圈. (4) 带导杆气缸 图 13-6 为带导杆气缸, 在缸筒两侧配导向用的滑动轴承 (轴 瓦式或滚珠式),因此导向精度高,承受横向载荷能力强. 13-6 典型带导杆气缸的结构 13-6 典型带导杆气缸的结构 (5)无杆气缸 无杆气缸是指利用活塞直接或间 接方式连接外界执行机构,并使其跟随活塞实现往复运动的气缸.这种气缸的最 大优点是节省安装空间. 1)磁性无杆气缸 活塞通过磁力带动缸体外部的移动体做同步移动,其结构如 图 13-7 所示.它的工作原理是:在活塞上安装一组高强磁性的永久磁环,磁力 线通过薄壁缸筒与套在外面的另一组磁环作用,由于两组磁环磁性相反,具有很 强的吸力.当活塞在缸筒内被气压推动时,则在磁力作用下,带动缸筒外的磁环 套一起移动.气缸活塞的推力必须与磁环的吸力相适应. 图 13-7 磁性无杆气缸 1-套筒 2-外磁环 3-外磁导板 4-内磁环 5-内磁导板 6-压盖 7-卡环 8 -活塞 9-活塞轴 10-缓冲柱塞 11-气缸筒 12-端盖 13-进,排气口 2)机械接触式无杆气缸 称机械接触式无杆气缸,其结构如 13-8 所示.在气 缸缸管轴向开有一条槽,活塞与滑块在槽上部移动. 为了防止泄漏及防尘需要, 在开口部采用聚氨脂密封带和防尘不锈钢带固定在两 端缸盖上,活塞架穿过槽,把活塞与滑块连成一体.活塞与滑块连接在一起,带 动固定在滑块上的执行机构实现往复运动.这种气缸的特点是:1) 与普通气缸 相比,在同样行程下可缩小 1/2 安装位置;2) 不需设置防转机构;3) 适用于缸 径 10~80mm,最大行程在缸径≥40mm 时可达 7m;4) 速度高,标准型可达 ~ ;高速型可达到 ~.其缺点 图 13-8 机械接触式无杆气缸 是:1) 密封性能差,容易产生外 泄漏.在使 l-节流阀 2-缓冲柱塞 3-密封带 4-防尘不锈钢带 5-活塞 6-滑块 7-活塞架 用三位阀时必须选用中压式;2) 受负载力小,为了增加负载能力,必须增加导 向机构. 图 13-8 机械接触式无杆气缸 l-节流阀 2-缓冲柱塞 3-密封带 4-防尘不锈钢带 5-活塞 6-滑块 7-活塞 架 (6)锁紧气缸 带有锁紧装置的气缸称为锁紧气缸按锁紧位置分为行程末端锁 紧型和任意位置锁紧型. 1)行程末端锁紧型气缸 如图 13-9 所示,当活塞运动到行程末端,气压释放后,锁 定活塞 1 在弹簧力的作用下插入活塞杆的卡槽中,活塞杆被锁定.供气加压时,锁定活塞 1 缩回退出卡槽而开锁,活塞杆便可运动. 图 13-9 带端锁气缸的结构原理 a)手动解除非锁式 b)手动解除锁式. 1-锁定活塞 2-橡胶帽 3,12-帽 4-缓冲垫圈 5-锁用弹簧 6-密封件 7-导向套 8-螺钉 9-旋钮 10-弹簧 11-限位环 2) 任意位置锁紧型气缸 按锁紧方式可分为卡套锥面式, 弹簧式和偏心式等多种形式. 卡套锥面式锁紧装置由锥形制动活塞 6,制动瓦 1,制动臂 4 和制动弹簧 7 等构成,其结构 原理如图 13-10 所示.作用在锥状锁紧活塞上的弹簧力由于楔的作用而被放大,再由杠杆 原理得到放大. 这个放大的作用力作用在制动瓦 1 上, 把活塞杆锁紧. 要释放对活塞的锁紧, 向供气口 A′供应压缩空气,把锁紧弹簧力撤掉. 图 13-10 制动气缸制动装置工作原理 a)自由状态 b)锁紧状态 l-制动瓦 2-制动瓦座 3-转轴 4-制动臂 5-压轮 6-锥形制动活 塞 7-制动弹簧 (7)气动手爪 气动手爪这种执行元件是一种变型气缸.它可以用来抓取物体, 实现机械手各种动作.在自动化系统中,气动手 爪常应用在搬运,传送工件机构中抓取,拾放物体. 图 13-10 制动气缸制动装置工作原理 图 13-11 平行开合手指 a)自由状态 b)锁紧状态 l-制动瓦 2-制动瓦座 3-转轴 4-制动臂 5-压轮 6-锥形制动活塞 7-制动弹簧 图 13-11 平行开合手指 气动手爪有平行开合手指(如图 13-11 所示),肘节摆动开合手爪,有两爪, 三爪和四爪等类型, 其中两爪中有平开式和支点开闭式驱动方式有直线式和旋转 式. 气动手爪的开闭一般是通过由气缸活塞产生的往复直线运动带动与手爪相连的 曲柄连杆,滚轮或齿轮等机构,驱动各个手爪同步做开,闭运动. (8)气液阻尼缸 气缸以可压缩空气为工作介质,动作快,但速度稳定性差,当负载变 化较大时,容易产生爬行或自走现象.另外,压缩空气的压力较低,因而气缸的输 出力较小.为此,经常采用气缸和油缸相结合的方式,组成各种气液组合式执行元件,以达 到控制速度或增大输出力的目的. 气液阻尼缸是利用气缸驱动油缸,油缸除起阻尼作用 图 13-12 气液阻尼缸 外,还能增加气缸的刚性(因为油是不可压缩的) ,发挥了 液压传动稳定,传动速度较均匀的优点.常用于机床和切削 装置的进给驱动装置. 串联式气液阻尼缸的结构如图 13-12 所示.它采用一根活塞杆将两活塞串在一起,油 缸和气缸之间用隔板隔开, 防止气体串入油缸中. 当气缸左端进气时, 气缸将克服负载阻力, 带动油缸向右运动,调节节流阀开度就能改变阻尼缸活塞的运动速度 . 图 13-13 单叶片式摆动气缸 工作原理图 1-叶片 2-转子 3-定子 4-缸体 图 13-12 气液阻尼缸 (10)摆动气缸 摆动气缸 是一种在小于 360°角度范围内做往复摆动的气 缸,它是将压缩空气的压力能转换成机械能,输出 力矩使 机构实现往复摆动.摆动气缸按结构特点可分为叶片式和活塞式两种. 1) 叶片式摆动气缸 单叶片式摆动气缸的结构原理如图 13-13 所示. 它是由叶片轴转 子(即输出轴) ,定子,缸体和前后端盖等部分组成.定子和缸体固定在一起,叶片和转子 联在一起.在定子上有两条气路,当左路进气时,右路排气,压缩空气推动叶片带动转子顺 时针摆动.反之,作逆时针摆动. 叶片式摆动气缸体积小,重量最轻,但制造精度要求高,密封困难,泄漏是较大,而且 动密封接触面积大,密封件的摩擦阻力损失较大,输出效率较低,小于 80%.因此,在应用 上受到限制,一般只用在安装位置受到限制的场合,如夹具的回转,阀门开闭及工作台转位 等. 图 13-13 单叶片式摆动气缸工作原理图 1-叶片 2-转子 3-定子 4-缸体 2)活塞式摆动气缸 图 13-14 活塞式摆动气缸是将活塞的往复运动通过机构转变为输出 轴的摆动运动.按结构不同可分为齿轮齿条 式, 齿轮齿条式摆动气缸结构原理 螺杆式和曲柄式等几种. 1-齿条组件 2-弹簧柱销 3-滑块 4-端盖 5-缸体 6-轴承 7-轴 8-活塞 9-齿轮 图 13-14 齿轮齿条式摆动气缸结构原理 1-齿条组件 2-弹簧柱销 3-滑块 4-端盖 5-缸体 6-轴承 7-轴 8-活塞 9- 齿轮 齿轮齿条式摆动气缸是通过连接在活塞上的齿条使齿轮回转的一种摆动气缸, 其 结构原理如图 13-14 所示.活塞仅作往复直线运动, 摩擦损失少,齿轮传动的效率较高,此摆动气缸效率可达到 95%左右.三,气缸的技术参数1)气缸的输出力 气缸理论输出力的设计计算与液压缸类似,可参见液压缸的设计计 算.如双作用单活塞杆气缸推力计算如下: 理论推力(活塞杆伸出) Ft1=A1p (13-1) 理论拉力(活塞杆缩回) Ft2=A2p 式中 (13-2) Ft1,Ft2——气缸理论输出力(N) ; A1,A2——无杆腔,有杆腔活塞面积(m2) ; p — 气缸工作压力(Pa) . 实际中, 由于活塞等运动部件的惯性力以及密封等部分的摩擦力, 活塞杆的实际输出力 小于理论推力,称这个推力为气缸的实际输出力.气缸的效率 η 是气缸的实际推力和理论推力的比值,即 F η= Ft (13-3) 所以 F = η ( A1 p ) (13-4) 气缸的效率取决于密封的种类,气缸内表面和活塞杆加工的状态及润滑状态.此外,气 缸的运动速度,排气腔压力,外载荷状况及管道状态等都会对效率产生一定的影响.2) 负载率β 从对气缸运行特性的研究可知, 要精确确定气缸的实际输出力是困难的. 于是在研究气缸性能和确定气缸的出力时,常用到负载率的概念.气缸的负载率β定义为 β= 气缸的实际负载 F × 100 % 气缸的理论输出力 Ft (l3-5) 气缸的实际负载是由实际工况所决定的,若确定了气缸负载率 θ,则由定义就能确定气 缸的理论输出力,从而可以计算气缸的缸径. 对于阻性负载,如气缸用作气动夹具,负载不产生惯性力,一般选取负载率β为 ; 对于惯性负载,如气缸用来推送工件,负载将产生惯性力,负载率β的取值如下 β< 当气缸低速运动,v <100 mm/s 时; β< 当气缸中速运动,v=100~500 mm/s 时; β< 当气缸高速运动,v >500 mm/s 时.3)气缸耗气量 气缸的耗气量是活塞每分钟移动的容积,称这个容积为压缩空气耗气 量,一般情况下,气缸的耗气量是指自由空气耗气量. 4)气缸的特性 气缸的特性分为静态特性和动态特性.气缸的静态特性是指与缸的输 出力及耗气量密切相关的最低工作压力,最高工作压力,摩擦阻力等参数.气缸的动态特性 是指在气缸运动过程中气缸两腔内空气压力,温度,活塞速度,位移等参数随时间的变化情 况.它能真实地反映气缸的工作性能. 四,气缸的选型及计算 1.气缸的选型步骤 气缸的选型应根据工作要求和条件, 正确选择气缸的类型. 下面以单活塞杆双作用缸为 例介绍气缸的选型步骤. (1)气缸缸径.根据气缸负载力的大小来确定气缸的输出力,由此计算出气缸的缸径. (2)气缸的行程.气缸的行程与使用的场合和机构的行程有关,但一般不选用满行程. (3)气缸的强度和稳定性计算 (4)气缸的安装形式.气缸的安装形式根据安装位置和使用目的等因素决定.一般情况 下,采用固定式气缸.在需要随工作机构连续回转时(如车床,磨床等) ,应选用回转气缸. 在活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸.有特殊要求时,应选用相 应的特种气缸. (5)气缸的缓冲装置.根据活塞的速度决定是否应采用缓冲装置. (6)磁性开关.当气动系统采用电气控制方式时,可选用带磁性开关的气缸. (7)其它要求.如气缸工作在有灰尘等恶劣环境下,需在活塞杆伸出端安装防尘罩. 要求无污染时需选用无给油或无油润滑气缸. 2.气缸直径计算 气缸直径的设计计算需根据其负载大小,运行速度和系统工作压力来决定.首先,根据 气缸安装及驱动负载的实际工况,分析计算出气缸轴向实际负载 F,再由气缸平均运行速度 来选定气缸的负载率 θ,初步选定气缸工作压力(一般为 MPa~ MPa) ,再由 F/θ, 计算出气缸理论出力 Ft, 最后计算出缸径及杆径, 并按标准圆整得到实际所需的缸径和杆径. 例题 气缸推动工件在水平导轨上运动.已知工件等运动件质量为 m=250 kg,工件与 导轨间的摩擦系数 =,气缸行程 s 为 400 mm,经 s 时间工件运动到位,系统 工作压力 p = MPa,试选定气缸直径. 解:气缸实际轴向负载 F = mg = × 250 × N 气缸平均速度 s 400 v= = ≈ 267 mm/s t 选定负载率 θ = 则气缸理论输出力 F1 = F 双作用气缸理论推力 θ = = N 1 F1 = πD 2 p 4 气缸直径 按标准选定气缸缸径为 63 mm. D= 4 Ft 4 × = ≈ mm πp × 气缸种类:气缸整理 气缸整理气缸主要作用是通过压缩空气的开关流向实现伸缩和摆动等动作. (一).公司所用到的气缸主要有以下几种类型: 一. 无导向气缸 1.圆缸 需传感器安装支架 2.方缸 3.紧凑型气缸 2010-6-2 1 二. 有导向气缸 1.带滑块的气缸: 滑块 精确度高,封闭式滚珠导向,重复精度高, 两端采用弹性缓冲,并且不带金属挡块 滑块 扁平结构带高精度滚珠导轨和可调端位 c. SLF, SLS, SLT 滑块 窄型结构带 高精度滚珠导轨 d. SLT 滑台 高精度,耐重载的滚珠导轨和可调刚性端位. e. 滑动单元(双活塞) SPZ 双活塞杆, 2.带导杆的气缸 a 微型导向驱动器 DFC 带滑动导轨. 直径 4, 6, 10 mm 行程 5 … 30 mm 输出力 7,5 … 47 N 2010-6-2 2 b 中型导向驱动器 DFM 导向气缸,内置导轨 C 高精度导杆气缸 DFP 导向气缸,抗扭转, 双活塞杆. d 紧凑型气缸 ADVUL 带防止活塞转动的导柱 e 导向驱动单元 SLE 直线驱动单元 可配置 圆缸加配件 3.双活塞杆的气缸 DPZ 带两根平行的活塞杆,位置感测,终端带弹性缓 冲环 三.其它气缸 1.直线摆动夹紧缸 CLR 夹紧系统,具有直线及摆动动作,90 度向右 2010-6-2 3 2.摆动气缸带可调液压缓冲器和能补偿间隙的齿轮系统. 摆动角度 0 ... 360 用于搬运和装配的系统产品. 3.平行气爪/旋转气爪自对中,内抓取或外抓取,182°摆角,位置感测 4.夹紧模块 2010-6-2 4 5.气囊式气缸 6.无杆气缸 7.膜片式气缸 8.多位置气缸 (二)常见的气缸附件 2010-6-2 5 (三) 气缸常见故障 . 由于安装与使用不当气缸也会产生故障. 故障 原因分析 排除方法 活塞杆安装偏心 重新安装调整,使活塞杆不受偏心和横 外 泄 活塞杆端漏气 润滑油供应不足 向负荷. 检查油雾器是否失灵. 漏 缸筒与缸盖间漏气 活塞密封圈磨损 缓冲调节处漏气 活塞杆轴承配合面有杂质 更换密封圈. 活塞杆有伤痕 清洗除去杂质,安装更换防尘罩. 更换活塞杆. 内 活塞密封圈损坏 更换密封 泄 润滑不良 检查油雾器是否失灵 漏 活塞两端串气 活塞被卡住,活塞配合面 重新安装调整,使活塞杆不受偏心和横 有缺陷. 向负荷. 杂质挤入密封面 除去杂质,采用净化压缩空气. 润滑不良 检查油雾器是否失灵 输出力不足 活塞或活塞杆卡住 重新安装调整,消除偏心横向负荷. 动作不平稳 供气流量不足 加大连接或管接头口径 有冷凝水杂质 注意用净化干燥压缩空气, 防止水凝结. 缓冲密封圈磨损 更换密封圈 缓冲效果不良 调节螺钉损坏 更换调节螺钉 汽缸速度太快 注意缓冲机构是否适合 有偏心横向负荷 消除偏心横向负荷 损伤 活塞杆损坏 活塞杆受冲击负荷 冲击不能加在活塞杆上 气缸的速度太快 设置缓冲装置 缸盖损坏 缓冲机构不起作用 在外部或回路中设置缓冲机构
从传统观念来看,气缸与电动执行器一直被认为是属于两个完全不同领域的自动化产品,但是近年来,随着电气化程度的不断提高,电动执行器却慢慢浸入气动领域,二者在应用中既有竞争又相互补充。在本期栏目中,我们将从技术性能、购买和应用成本、能源效率、应用场合及市场形势等几个方面来对比气缸与电动执行器各自的优势。一、技术性能众所周知,相比电动执行器,气缸可在恶劣条件下可靠地工作,且操作简单,基本可实现免维护。气缸擅长作往复直线运动,尤其适于工业自动化中最多的传送要求——工件的直线搬运。而且,仅仅调节安装在气缸两侧的单向节流阀就可简单地实现稳定的速度控制,也成为气缸驱动系统最大的特征和优势。所以对于没有多点定位要求的用户,绝大多数从使用便利性角度更倾向于使用气缸。目前工业现场使用电动执行器的应用大部分都是要求高精度多点定位,这是由于用气缸难以实现,退而求其次的结果。而电动执行器主要用于旋转与摆动工况。其优势在于响应时间快,通过反馈系统对速度、位置及力矩进行精确控制。但当需要完成直线运动时,需要通过齿形带或丝杆等机械装置进行传动转化,因此结构相对较为复杂,而且对工作环境及操作维护人员的专业知识都有较高要求。二、气缸的优势:(1)对使用者的要求较低。气缸的原理及结构简单,易于安装维护,对于使用者的要求不高。电缸则不同,工程人员必需具备一定的电气知识,否则极有可能因为误操作而使之损坏。(2)输出力大。气缸的输出力与缸径的平方成正比;而电缸的输出力与三个因素有关,缸径、电机的功率和丝杆的螺距,缸径及功率越大、螺距越小则输出力越大。一个缸径为50mm的气缸,理论上的输出力可达2000N,对于同样缸径的电缸,虽然不同公司的产品各有差异,但是基本上都不超过1000N。显而易见,在输出力方面气缸更具优势。(3)适应性强。气缸能够在高温和低温环境中正常工作且具有防尘、防水能力,可适应各种恶劣的环境。而电缸由于具有大量电气部件的缘故,对环境的要求较高,适应性较差。电缸的优势主要体现在以下3个方面:(1)系统构成非常简单。由于电机通常与缸体集成在一起,再加上控制器与电缆,电缸的整个系统就是由这三部分组成的,简单而紧凑。(2)停止的位置数多且控制精度高。一般电缸有低端与高端之分,低端产品的停止位置有3、5、16、64个等,根据公司不同而有所变化;高端产品则更是可以达到几百甚至上千个位置。在精度方面,电缸也具有绝对的优势,定位精度可达?,所以常常应用于电子、半导体等精密的行业。(3)柔韧性强。毫无疑问,电缸的柔韧性远远强于气缸。由于控制器可以与PLC直接进行连接,对电机的转速、定位和正反转都能够实现精确控制,在一定程度上,电缸可以根据需要随意进行运动;由于气体的可压缩性和运动时产生的惯性,即使换向阀与磁性开关之间配合地再好也不能做到气缸的准确定位,柔韧性也就无从谈起了。在技术性能方面,本人认为电动和气动各有所长,首先电动执行器的优势主要包括:(1)结构紧凑,体积小巧。比起气动执行器,电动执行器结构相对简单,一个基本的电子系统包括执行器,三位置DPDT开关、熔断器和一些电线,易于装配。(2)电动执行器的驱动源很灵活,一般车载电源即可满足需要,而气动执行器需要气源和压缩驱动装置。(3)电动执行器没有“漏气”的危险,可靠性高,而空气的可压缩性使得气动执行器的稳定性稍差。(4)不需要对各种气动管线进行安装和维护。(5)可以无需动力即保持负载,而气动执行器需要持续不断的压力供给。(6)由于不需要额外的压力装置,电动执行器更加安静。通常,如果气动执行器在大负载的情况下,要加装消音器。(7)电动执行器在控制的精度方面更胜一筹。(8)气动装置中的通常需要把电信号转化为气信号,然后再转化为电信号,传递速度较慢,不宜用于元件级数过多的复杂回路。而气缸的优势则在于以下4个方面:(1)负载大,可以适应高力矩输出的应用(不过,现在的电动执行器已经逐渐达到目前的气动负载水平了)。(2)动作迅速、反应快。(3)工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射和振动等恶劣工作环境中,比液压、电子、电气控制更优越。(4)行程受阻或阀杆被扎住时电机容易受损。三、购买和应用成本比较从总体上来讲,电伺服驱动比气动伺服驱动要贵,但也要因具体要求及场合而定。有些小功率的直流电机构成电动滑台(电伺服系统)实际上比气动伺服系统要便宜。如:当负载为、工作行程为80mm、速度在2~170mm/s之间、精度为?、加速度等工况条件时,采用小型电动滑台、控制器、马达电缆、控制电缆、编程电缆以及电源电缆等组成的电伺服系统,其价格就比气动伺服系统便宜25%。同样,对于带活塞杆电缸也是如此。需要说明的是如果采用交流电机的话,所组成的电伺服系统的价格要比气动伺服系统高出40%左右。从购买和应用成本来看,目前气缸还是具有比较明显的优势的。对于气动系统来说,控制系统及执行机构都非常简单,每个气缸只需配置一个电磁阀就可完成气路的切换,进行运动控制,气缸发生故障的概率也比较小,维护简单方便,成本也低。而对于电动执行器来说,虽然电能的获得比较简单,能量成本较低,但购买及应用成本较高,不仅需要配置电机,还需要一套机械传动机构以及相应的驱动元件。同时使用电动执行器需要很多保护措施,错误的电路连接、电压的波动及负载的超载都会对电驱动器造成损坏,因此需要在电路及机械上加装保护系统,增加了很多额外的费用支出。另外,由于电动执行器驱动单元的参数化设置较多,且集成度高,所以其一旦发生故障,就要更换整个元件。而且当系统需要的驱动力增加时,也要成套更换元件才能实现。因此综合比较可以看出气缸在购买及维护成本上有较大优势。四、能源效率比较我们研究的结果表明,在往复运动周期较短(小于1min)的水平往复运动中,电动执行器的运行能耗通常低于气缸的运行能耗,即更节能。而在往复运动周期较长(大于1min)时,气缸竟然变得更节能。这首先是由于终端停止时电动执行器的控制器通常需要消耗约10W的电力,而气缸仅有电磁阀耗电和气体泄露,一般低于1W,即终端停止时间越长,对气缸越有利;其次电机在连续旋转条件下的额定效率可达90%以上,但在直线往复运动(丝杠转换)中的台形加减速旋转条件下的平均效率却不到50%。在竖直往复运动时,夹持工件的保持动作要求不断供给电流给电动执行器以克服重力,而气缸只需关闭电磁阀即可,耗电极少。因此在竖直往复运动时电动执行器相比气缸的能耗优势不是很大。由上可见,电机本身效率很高,但在往复直线运动中考虑其效率下降及控制器的电力消耗,电动执行器未必一定比气缸节能,具体比较取决于实际的工作条件,即安装方向、往复运动周期和负载率等。五、应用场合比较气动系统和电动系统并不互相排斥。相反,这只是一个要求不同的问题。气动驱动器的优势显而易见,当面临诸如灰尘、油脂、水或清洁剂等恶劣的环境条件时,气动驱动器就显得较适应恶劣环境,而且非常坚固耐用。气动驱动器容易安装,能提供典型的抓取功能,价格便宜且操作方便。在作用力快速增大且需要精确定位的情况下,带伺服马达的电驱动器具有优势。对于要求精确、同步运转、可调节和规定的定位编程的应用场合,电驱动器是最好的选择,带闭环定位控制器的伺服或步进马达所组成的电驱动系统能够补充气动系统的不足之处。从技术和使用成本的角度来说,气缸占有较明显的优势,但在实际使用中究竟应该选用哪种技术做驱动控制,还是应从多方因素进行综合考量。现代控制中各种系统越来越复杂、越来越精细,并不是某种驱动控制技术就可满足系统的多种控制功能。气缸可以简单的实现快速直线循环运动,结构简单,维护便捷,同时可以在各种恶劣工作环境中使用,如有防爆要求、多粉尘或潮湿的工况。电动执行器主要用于需要精密控制的应用场合,现在自动化设备中柔性化要求在不断提升,同一设备往往要求适应不同尺寸工件的加工需要,执行器需要进行多点定位控制,而且要对执行器的运行速度及力矩进行精确控制或同步跟踪,这些利用传统气动控制是无法实现的,而电动执行器就能非常轻松的实现此类控制。由此可见气缸比较适用于简单的运动控制,而电执行器则多用于精密运动控制的场合。六、市场形势比较气缸驱动系统自70年代以来就在工业自动化领域得到了迅速普及。今天,气缸已成为国内外工业生产领域中PTP(PointToPoint)搬运的主流执行器,以气缸驱动系统为核心的气动元器件市场规模已达到110亿美元的规模。九十年代开始,电机及其微电子控制技术迅速发展,使电动执行器在工业自动化中的应用成为可能。而且,半导体产业的兴起也直接促进了能实现高精度多点定位的电动执行器在工业领域应用的扩大。九十年代末期,日本等主要工业发达国家,甚至一度出现了电动执行器即将取代气缸,气缸将退出历史舞台的论调。因为人们普遍认为电动执行器中电机的能量转换效率高,而气缸能量转换效率较低,低效的产品必将被淘汰出局。然而,十年过去了,电动执行器在工业现场并未得到普及,其市场规模与气动相比还有很大差距。而且,无论是在工业发达国家,还是在中国等新兴工业国家,气缸的销量不仅没有减少,而且还在稳步地增长。在中国,近几年气缸销量的年增长速度一直维持在20%以上。如需要科学、客观地评价两者,必须采用全生命周期评价(LifeCycleAssessment)手法,考虑比较制造阶段、使用阶段、废弃阶段三个阶段的综合指标。具体指标有成本、能耗、对环境的负担(主要是排放物等)。譬如成本,电动执行器在运行能耗(使用阶段)成本上有优势,但维护成本(使用阶段)和购置成本(制造阶段)都比气缸要高得多,在该指标上的比较应建立在所有成本的总和上。在总成本上,我们的研究结果表明,气缸在大多数工业应用场合具有一定优势。综合以上分析,我们应该看出,气缸与电动执行器各有特点,不可单纯地用效率的高低来评价其优劣。随着电气技术的发展,电动执行器的成本还会进一步下降,预期其应用领域还会进一步拓广,但要完自吸无堵塞排污泵全取代气缸是不现实的。从市场形式来看,前面己经提到若电缸从一开始就参照气缸的外形及安装连接尺寸生产,是一个很好的开端。而对于目前还未有ISO标准的无杆气缸和气动滑台,则同样采用相对应的外形及安装连接尺寸,这个便利的措施能够杜绝气驱动与电驱动在安装、添置或更换方面无谓的竞争。电驱动器的特点是精确和灵活。在作用力快速消失和需要精确定位的应用场合,电驱动器是无堵塞自吸排污泵理想的决方案。因此今后气缸与电动执行器的发展应该是处于非常良性状况和互补的,也一定会按照这两门技术自身的科学自然发展规律发展。
150 浏览 7 回答
140 浏览 5 回答
114 浏览 3 回答
125 浏览 3 回答
198 浏览 4 回答
231 浏览 3 回答
122 浏览 2 回答
146 浏览 4 回答
96 浏览 4 回答
194 浏览 2 回答
106 浏览 4 回答
349 浏览 6 回答
326 浏览 4 回答
279 浏览 6 回答
94 浏览 5 回答