在高中数学实际教学过程中,有些教师严重忽视了教师扮演的角色,出现过分重视学生独立学习的现象,这是高中数学 教育 工作者不容忽视的问题!下面是我为大家整理的高中数学教学问题探究论文,欢迎阅读! 高中数学教学问题探究论文篇一 1、关于存在的问题 学生接受不了容量较大、难度较强的高中教材。初中学习数学时,初中教材内容简单通俗,题型较少比较容易,学生很轻松的掌握数学知识的来龙去脉,教材对概念描述简单,一些数学定理根本没有论证,教材之间衔接较缓。高中教材内容极为抽象,注重于变量、字母的研究,注重计算、分析理论、注重逻辑性、抽象性的知识呈现。例如高一就出现集合、映射、函数等众多的抽象概念,符号极多,定义、定理教材叙述极为严格,具有高起点、难度很大,容量有多的特点。近几年教材的调整,初中教材降低的幅度较大,高中教材也降低了一些,但是由于受高考的制约,教师不能也不敢降低难度,直接造成了高中数学教学的难度根本没有降低,可以肯定说,调整后的高中教材不但没有降低难度,反而难度更大了。高中一年级时间紧,数学容量大,教学进度极快,学生不适应高中数学学习也就不足为怪了。 学生不适应初中与高中课标中部分知识点的衔接。初中数学课程标准对一些知识要求简单理解,高中教材也没有进行适当补充,一些初中学生应该掌握的知识,学生只知道肤浅的内容,或者只知道一个结论而已,结论是怎样来的,用结论解答什么问题,解答的途径 方法 等一概不知。出现了高一学生上课时常遇到没有学过的知识。例如:初中内容一元二次方程的判别式,根与系数的关系,二次函数的图像解二次不等式诸多问题,课程标准要不高,学生接触过简单知识点,高中学习感到特别难以接受。一些教师没有办法,只有进行补充,占据了大量时间,为完成教学任务,只有加快速度。导致了初中数学知识没掌握,高中数学知识被落下了的惨剧。 学生不能很快适应高中老师的教学方式。初中教材内容少多、难度不大、要求较低,教师教学进度不快,一些重点、难点,反复讲解,多次练习,逐一击破。一些教师为了学生中考取得好的成绩,不厌其烦的进行演练,有的问题达到了炉火纯青的地步。造成了有的学生学习数学积极性的丧失,出现了学生“重知识,轻能力”、“重试卷,轻书本”的错误。学生进入高中学习,教材的丰富容量、要求较高、进度很快、信息广泛、难度加深,知识的重点难点就更不用说了。新课程标准的高中教学通过设导、设问、设陷、设变,启发引导学生去思考、去解答,注重学生思想方法的渗透,思维品质能力的培养,提倡学生自主学习。刚刚入学的高中生很难适应这种教学形式,跟不上教师的讲课,严重影响了数学的学习。 学生没有及时调整自己的心理及 学习方法 。高中一年级学生面对一切都是新的:新环境、新教材、新同学、新教师、新集体……,学生一定有一个由陌生到熟悉的经历。紧张而残酷的中考,进入了理想的高中学习,一些学生有松口气的心理,入学后不紧张,优哉游哉。一些学生中考前就听到高中数学如何难学的信息,产生了敬而远之的心理。高中数学一些抽象的概念例如映射、集合、异面直线更让学生无所适从,影响了高一新生的学习质量。初中教师讲解得很细,训练的熟练,学生经过训练,概念、公式、题型了如指掌,只要对号入座即可取得好成绩。学生围着老师转,完全听命于老师,不注重自主思考、归纳 总结 。高中学习内容较多,学习时间较少,要求学生必须归纳总结,掌握数学思维方法,触类旁通。高一学生学习数学,仍然使用 初中学习方法 ,造成学习阻力很多,完成老师当天布置的作业都很艰难,预习、复习时间没有了,严重影响学习质量的提高。 新课程的辅导资料不尽完善。新课程改革进行几年了,书市上教辅资料繁多,这些教辅资料和老教材教辅资料一脉相承,有的只是对顺序做了调整而已。内容可谓涛声依旧,没有体现新课程标准理念,让师生对学好数学提出异议。 2、关于几项对策 措施 掌握学生学情,进行有效衔接。高一开学伊始,召开新生座谈会,调查学生入学成绩,进行相关测试,了解学生学习基础,什么学习习惯,初中数学教师讲课特点。研究初中高中教学大纲、教材,掌握初高中知识体系,找到初高中知识最佳衔接点,有的放矢对学生讲授,进行有效衔接。 激发学生学习的兴趣,实现心理衔接。教师必须发挥情感和心理的积极作用,兴趣是进行有效活动的必要条件,要让学生学好数学,一定要激发学习数学的兴趣,运用多媒体教学手段,调动学生学习数学的欲望,让学生树立学好的信心,注重良好的学习习惯培养,鼓励学生大胆质疑,标新立异,自主学习,提倡探究学习,让学生适应高中数学学习,学生的每一次成功。教师要及时肯定表扬鼓励,实现心理衔接。 关于教材内容的衔接。高一教学中把重点放在基础知识上,不能过分强调难题、偏题、高考题,让学生接受数学,喜欢数学,完成数学知识的学习,践行新课程理念,教师教学采用“低起点、小梯度、多训练、分层次”进行,温习初中旧知识,学习高中新知识,实现初高中教材内容的衔接。 关于教学方式的衔接。高中数学要求学生观察、类比、归纳、分析、综合建立严密的概念, 教学方法 上必须实现较好的衔接。发挥教师的主导作用,突出学生的主体主用,让学生自主探索、合作交流,真正理解和掌握数学知识和数学思想方法,直接获得数学活动 经验 。 关于学法指导、良好学习习惯的培养。必须体现学生为本的理念。彻底改变学习方式,倡导学生在教师的指导,互相交流、主动参与。激发学生想象思维,鼓励课堂上踊跃发言,培养学生养成良好的学习习惯,加强学习方法的指导,提高教学质量。 关于培养学生数学思维品质。教师一定注重加强学生的 思维训练 ,开展有效思维活动,摒弃思维惰性,把学生分析问题能力上的衔接好。 作者:张宇欣 工作单位:吉林省公主岭市怀德第一中学 高中数学教学问题探究论文篇二 一、高中数学教学现状 目前,在高中数学的教学实践中,学生主要采用题海战术以及死记硬背的方式,培养学生自主解决问题的能力,搜集各种的题目让学生去练习,并且对解题方法进行死记硬背,然后在碰到类似题型的时候就机械的模仿其解题套路,不自己寻找问题解决的办法。而教师则采用传统的满堂灌式的教学方法,将不同类型的数学习题与具体的解题思路全部告知学生,长此以往,学生失去了对数学学习的主动性与积极性,极大的影响到学生自主解题能力与 创新思维 能力的培养,一旦遇到以前没有接触过的题目类型,就变得束手无策。因此,在新课标的倡导下,教师与学生都需要积极的转变观念,注重对问题解决能力的培养,从而提高高中数学教学的有效性。 二、学生问题解决能力的培养 首先,巩固基础知识的教学,为学生自主解决问题提供必要的保障。通过对知识与能力两者的内在关系进行分析,发现学生“自主解决问题”的能力的培养与有效提高主要取决于两个因素:一,教师在实践教学中,对学生整个知识基础与技能状况的准确把握;二,在此基础之上,为学生“自主解决问题”能力的培养,提供必要的知识与技能的准备。因此,在高中数学的实践教学中,教师不仅需要通过各种途径全面的把握学生对知识的掌握程度,而且还需要采取有效的措施为学生在新旧知识间架出一座“桥梁”,注重对学生既基础知识与技能的教学,从而为学生学习新的数学知识并解决新的数学问题提供智力方面的支持。同时,在教学中,教师还需要注重对知识的积累,帮助学生进行知识的分类与整理,从而为其自主的分析问题与解决问题创造良好的条件。其次,创设问题情境,引导学生自主发现问题。积极培养学生的“自主解决问题”的首要任务就是让学生在学习中,自主的发现问题,并提出问题。问题是思维的起源,任何一个思维过程都指向了一个具体的问题,而且问题也是创造的基础,一切的创造也从问题开始[1]。在高中数学的教学实践中,创设一个“问题情境”,就是相当于建立一个良好的学习环境,它能够有效的激发广大学生学习的主动性与积极性,从儿进行自主的思考与探讨,积极的发现问题。因此,在数学课堂中,教师就需要对学生的“最近发展区”实施全面的把握,并在此基础之上创设出一些“问题情境”,使学生能够“跳一跳”就能自主的发现并提出问题。如在对“等比数列”这一知识开展教学的时候,教师就可以这样创设“问题情境”:有一天,兔子与乌龟赛跑,乌龟在兔子前方1公里处,而已知兔子的速度是乌龟的10倍,当兔子向前追1公里时,乌龟同样前景了1/10公里;而当兔子追到1/10公里处的时候,乌龟又向前走了1/100公里;当兔子赶到1/100公里处时候,乌龟又向前走了1/1000公里……问:在相同的时段内,兔子与乌龟各自的路程是多少?兔子能追上乌龟吗?通过这种形式的问题情境的创设,让学生观察到数列的特点,进而引出有关等比数列的概念,激发学生的学习兴趣,从而引导学生发现相应的问题并提出问题。最后,培养创新思维,挖掘新型的数学思维方法,为学生“自主解决问题”提供条件。在高中数学的学习过程中,创新思维是分析问题与解决问题的重要构成部分,对开发学生的智力有着重要的作用,因此,在高中数学的实践教学中,教师要积极培养学生的创新思维,鼓励学生进行大胆的猜想,从而提出问题[2]。同时,教师还需要积极鼓励学生挖掘新型的数学思维方法,并将其进行全面的把握与应用,从而真正体会到数学学习的本质,并将其运用到实际的数学问题的解决当中,使整个数学的解题的思维能力可以得到有效的培养的提高,进而发展学生的“自主解决问题”的能力。 三、结束语 数学作为一门基础的应用学科,要求学生具备较强 想象力 、 逻辑思维 能力与推理的能力。然而在实际的学习过程中,由于学生缺乏对问题的自主解决能力,导致学生一般都认为数学比较难学,不愿意学习数学,进而产生“厌学”心理。因此,在高中数学的教学实践中,教师要注意对学生的“自主解决问题”能力的充分培养,从而有效的提高学生对数学问题的解决能力,进而提高学习效果[3]。 作者:冯春瑞 工作单位:甘肃省华亭县教育局 高中数学教学问题探究论文篇三 1高中数学教学过程中存在的若干问题 过分重视学生的自主学习,忽略教师的引导作用 在高中数学教学过程中,丰富学生的学习风格以及方法,能够促使学生更加会学习,为之后他们一生的学习与发展打下良好的基础。除此之外,在高中数学实际教学过程中,严重忽视了教师扮演的角色、过分重视学生独立学习的现象。由于教师角色的缺失,学生的认知水平,只是在原地徘徊,导致课堂教学。教学过程是学生自主建构的统一和教师指导。当学生遇到困难,教师要引导学生认为,当学生的思维是窄的,教师应该开阔自己的思维。总之,教师的指导是确保学生学习的方向和有效性的重要前提。 教学课堂上缺乏对学生进行正面教育 高中数学新课程强尊重个性差异和学生的学习,鼓励学生积极参与。学习有困难,贫困学生给予及时的表扬和鼓励的自信,但这并不意味着学生盲目歌颂。赞美和批评的完整的识别和动机。一方面,我们要善于发现学生的闪光点,思想,及时,适当的表扬和鼓励,让学生得到发挥;另一方面,学生的错误意见,明确指出,要澄清模糊数学问题。 教学课堂上教师的角色缺乏平衡性 新数学课程要求提高学生主动观察,实践,猜测,推理,数学教学和学习活动的验证和交换。学生的学习风格,阅读,实践,自主探索,合作交流等。但老师指导,合作者和促进者,成为课堂教学的领导者。新课程倡导民主,开放性,科学课程,强调“教师即课程”。这就要求教师不仅要成为课程的实施,应该成为课程的建设者和开发者。新课程与旧课程之间的比较,它们之间的根本区别在于新课程要求培养学生的创新精神和促进教学过程中的学生的个性发展,强调学生在自己的感情,并引导他们进行自己的意见,让他们成为数学学习的主人,不仅是对传统的教学方法,在教学转移。然而,在实际的学习项目,因为学生的认知上的局限性和个体差异,不可避免地会出现各种意想不到的问题,就必须充分发挥教师的主导作用,教师应及时评价,正确处理学生的经验,多了解,理解和共识,多元 文化 的普世价值之间的关系。此外,在新课程把太多的重点放在对个性差异的尊重和学习的学生,鼓励学生积极参与,以夸张赞美的激励效果,忽略错误校正LED,培养学生的自信心理,影响了他们的身心健康。 2高中数学教学内容存在的若干问题 教学内容难度进一步加大 新课程理念下,我们使用的是人教版教材编写的一个,与旧教材相比似乎难度降低,但也增加了一些新的内容,而这些困难的部分新增加的不小。我觉得新课程教材是完全按照市重点高中学生的实际情况,制备,不考虑农村学生。如算法初步内容,涉及的知识在计算机语言,具有较高的逻辑相关的知识,抽象和专业。这些内容在农村的学生很难学,因为地区的差异,他们计算机知识的掌握是不够的,甚至可以说,这方面的知识是没有的。新的数学课程,所需的内容分为五个模块,高中完成所要求的5个模块和两个选修模块。教学内容的增加,教师为了完成教学任务,一味追求教学进度,有时一类的两个或三个小时的内容,没有实践,没有消化,没有巩固,使学生了解不全面,甚至能记住的知识不了解或不了解的深入,当然不会解决问题,这势必增加,学习的难度。 教学过程中没有充分发挥教师的引导作用 在实际教学中,重视学生的学习自主性,而忽视教师的积极引导,一些教师认为,新课程是要充分发挥学生的主动性,让学生自己学习,而忽视了教师的必要的,模糊的积极引导,数学知识的准备接受课程的学生,降低了课堂教学的有效性。 新课改背景下淡化了教学素材的实际作用 在新课程的要求,在高中数学教学中,充分利用各种资源,完成补充材料,以扩大,延伸,组合,并把它们放进学生的实际生活,但由于教师个体的差异和课程资源的认识程度,在教学实践中,教学资源教师片面发展未能完全控制的教学内容,教学内容的泛化,甚至出现模糊现象,面对这种情况,教师要合理利用现代化的教学手段,充分利用教学书的配套光盘制作高质量课件来丰富他们的教学。我们应该根据教学内容的特点,并充分发挥计算机辅助,精心制作多媒体课件的适用,以达到最佳的教学效果。 过分强调计算机与信息技术教学 随着信息网路技术的日益盛行,计算机辅助教学,信息技术是数学教育现代化的重要手段。例如,在几何中的高中数学教学过程中,进行适当的教学课件,利用多媒体辅助教学手段充分,从而能够达到更好的教学效果。由此可见,计算机教学在高中数学教学过程中,具有十分重要的教学辅助作用,从而、在当前高中数学教学课堂教学中,使用计算机信息技术教学成为教学的主要手段,安全忽略其使用是否过量。计算机技术教学纵使再好也不能什么事情都依赖于多媒体网络,如基本的算术,想象力,学生数学活动的逻辑推理,数学证明应该依靠自己来完整的,因此,我认为掌握好教学信息技术与传统教学之间的平衡,注重有效的整合,整合最好的。 3结语 综上所述,高中数学教学过程中仍旧存在部分不足,需要进一步加强对教学问题的解决,为广大师生进行教学和学习提供一个良好的学习环境,尽最大可能的去规避这些不足点的再次出现。 作者:王俊民 工作单位:甘肃省白银市平川中学
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点()与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点()与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:
本人从事高中数学教学近十年,发现许多学生的数学思维单一,做习题的方法教条、缺乏灵活变通,而习题是训练学生数学思维的资源,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体,做好习题对学生思维能力的培养,解题能力的提高至关重要。要达到这一目的,倡导数学变式教学是一个行之有效的重要手段。如何进行课本习题的变式教学?下面谈谈自己的看法。一、习题变式教学的原则1、针对性原则习题的教学惯穿于新授课、习题课和复习课,与新授课、习题课和复习课并存,一般情况下不单独成课。因此,对于不同的授课,对习题的变式也应不同。例如,新授课的习题变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法;复习课的习题变式不但要渗透数学思想和数学方法,还要进行纵向和横向的联系,同时变式习题要紧扣考纲。在习题变式教学时,要根据教学目标和学生的学习现状,切忌随意性和盲目性。2、可行性原则选择课本习题进行变式,不要“变”得过于简单,过于简单的变式题会让学生认为是简单的“重复劳动”,没有实际效果,而且会影响学生思维的质量;难度“变”大的变式习题易挫伤学生的学习积极性,使学生难以获得成功的喜悦,长此以往,将使学生丧失自信心,因此,在选择课本习题进行变式时要变得有“度”,恰到好处。3、参与性原则在习题变式教学中,教师要让学生主动参与,不要总是教师“变”,学生“练”。要鼓励学生大胆地“变”,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,可以帮助学生使所学的知识点融会贯通,同时培养了学生的创新意识和创新精神以及举一反三的能力。二、习题变式教学的方法下面以课本的一道习题为例,谈谈习题变式教学的方法。原题:画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。(高中《数学(人教版)》必修(1)习题组第1题)1、将习题的条件特殊化条件特殊化是指将原题中一般条件,改为具有特定性的条件,使题目具有特殊性。将课本习题条件特殊化,引导学生挖掘条件,考察特定概念。例如,将原题改为:变式1:画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。这不仅考察了绝对值的概念,也考察了解一元二次方程,这符合由一般到特殊的认识规律,学生容易接受。2、改变习题的背景改变背景是指在某些条件不变的情况下,改变另一些条件的形式,使问题得到进一步深化。在教学过程中,变换习题的形式,可激发学生的探求欲望,从而提高学生的创新能力。例如,将原题改为:变式2::画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。这样变式不仅考察了函数的图象,而且考察了偶函数的定义和性质;变式3:求函数 在区间[-3,5]上的最值。变式4、求函数 单调区间。这样的变式练习,学生可以画图得出,也可以通过数学方法得出,通过这样的练习一定能提高学生学习数学的兴趣,且能巩固基础知识,熟练常规解题,从而达到教学目的。三、习题变式教学应注意的问题1、源于课本,高于课本在高中数学习题变式教学中,所选用的“源题”应以课本的习题为主,课本习题均是经过专家学者多次筛选后的题目的精品,我们没有理由放弃它。在教学中我们要精心设计和挖掘课本的习题,编制一题多变、一题多解、一题多用和多题一解以提高学生灵活运用知识的能力。2、循序渐进,有的放矢在高中数学习题变式教学中,对习题的变式要循序渐进,有的放矢。例如,在高三复习时让学生做完习题“一动圆M与圆 : 外切,与圆: 内切,求动圆圆心M的轨迹方程。”且点评后,可将此题目变为:变式1、已知圆 : 与圆 : ,若动圆M同时与圆 和圆 相外切,则动圆圆心M的轨迹是什么。变式2、已知圆 : 与圆 : , 若动圆M同时与圆 和圆 相内切,则动圆圆心M的轨迹是什么。变式3、已知圆 : 与圆 : , 若动圆M与圆 和圆 一个内切,一个外切,则动圆圆心M的轨迹又是什么。变式1是对习题的模仿,目的是让学生熟悉利用定义法求轨迹的过程;变式3的目的是让学生进一步熟悉利用定义法求轨迹的方法,并要进行分步讨论;三个变式的目的都是让学生掌握利用圆锥曲线的定义求轨迹的方法。将常规题变为探索题,是设计变式题的又一途径。由常规题变出来的探索题,对学生来说更具创造性和挑战性。3、纵向联系,温故知新在高中数学习题变式教学中,对习题的变式要注意纵向联系,要紧密联系以前所学知识,让学生在学习新知识的同时对旧知识也得到复习、巩固和提高,从而提高学习效率,让学生明白“任何事物都是相互联系的”这一哲学道理。例如,在学习《抛物线及其标准方程》(高中数学第二册(上))后,可将课本P118中的例3“斜率为1的直线经过抛物线 的焦点,与抛物线相交于两点A、B,求线段AB的长”可变为:变式1:经过抛物线的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线的关系是( )(A)相交;(B)相切;(C)相离;(D)没办法确定变式2:求证:经过抛物线 的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线相切。变式3:经过抛物线 的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线有何关系?通过上述变式题的练习,既巩固了抛物线的定义,又复习了圆与直线的知识,也复习了梯形的中位线定理等等,从而达到了变式练习的目的。总之,在高中数学教学中,搞好习题教学,特别是搞好课本习题的变式教学,不仅能加深学生对基础知识的理解和掌握,更重要的是在开发学生的智力、发展学生的思维,培养和提高学生的能力等方面,能发挥其独特的功效。变式教学可以让我们的学生在无穷的变化中领略数学的魅力,在曼妙的演变中体会数学的快乐。
142 浏览 3 回答
269 浏览 2 回答
89 浏览 3 回答
260 浏览 3 回答
144 浏览 3 回答
204 浏览 3 回答
194 浏览 3 回答
270 浏览 4 回答
327 浏览 3 回答
293 浏览 3 回答
165 浏览 3 回答
123 浏览 4 回答
314 浏览 3 回答
354 浏览 2 回答
193 浏览 3 回答