流变学研究内容是各种材料的蠕变和应力松弛的现象、屈服值以及材料的流变模型和本构方程。 材料的流变性能主要表现在蠕变和应力松弛两个方面。 蠕变是指材料在恒定载荷作用下,变形随时间而增大的过程。蠕变是由材料的分子和原子结构的重新调整引起的,这一过程可用延滞时间来表征。当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态,这就是结构重新调整的另一现象。材料在恒定应变下,应力随着时间的变化而减小至某个有限值,这一过程称为应力松弛。这是材料的结构重新调整的另一种现象。蠕变和应力松弛是物质内部结构变化的外部显现。这种可观测的物理性质取决于材料分子(或原子)结构的统计特性。因此在一定应力范围内,单个分子(或原子)的位置虽会有改变,但材料结构的统计特征却可能不会变化。 在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、应变和时间的物理变量来定量描述材料的状态的方程,叫作流变状态方程或本构方程。材料的流变特性一般可用两种方法来模拟,即力学模型和物理模型:在简单情况(单轴压缩或拉伸,单剪或纯剪)下,应力应变特性可用力学流变模型描述。在评价蠕变或应力松弛试验结果时,利用力学流变模型有助于了解材料的流变性能。这种模型已用了几十年,它们比较简单,可用来预测在任意应力历史和温度变化下的材料变形。力学模型的流变模型没有考虑材料的内部物理特性,如分子运动、位错运动、裂纹扩张等。当前对材料质量的要求越来越高,如高强度超韧性的金属、高强度耐高温的陶瓷、高强度聚合物等。对它们的研究就必须考虑材料的内部物理特性,因此发展了高温蠕变理论。这个理论通过考虑了固体晶体内部和晶粒颗粒边界存在的缺陷对材料流变性能的影响,表达出材料内部结构的物理常数,亦即材料的物理流变模型。