数学硕士论文开题报告
导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!
一、数学文化的内涵
数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。
受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。
19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。
他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。
二、数学文化研究的意义
区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。
数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。
数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。
数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。
如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。
数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。
三、数学的文化特征
1.数学的抽象性
在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”
数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。
2.数学的确定性
数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。
然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”
3.数学的继承性
科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。
从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。
四、提纲
目录
第1章 概述
文化的内涵
文明的内涵
数学文化的内涵
数学文化研究的意义与现状
第2章 数学的文化特征
数学的文化特征
数学的抽象性
数学的确定性
数学的继承性
数学的简洁性
数学的统一性
数学的功能特征
数学的渗透性
数学的传播性
数学的工具性
数学的预见性
数学的艺术特征
数学的艺术性
数学与音乐
数学与美术
数学与文学
第3章 数学与人类文明
数学是人类逻辑能力的来源
数学唤醒人类理性精神
数学促进人类思想解放
数学改善人类生活
数学完善人类品格
数学提高人类文化素质
第4章 数学与社会文明
数学促进社会进步
数学推动知识发展
第5章 我国数学文化与数学教育的研究进展
数学文化与数学教育研究综述
数学文化与数学教育活动进展
第6章 对数学教育的若干思考
数学素养是国民文化素质的重要构成.
数学教育现状
数学文化教育亟需解决的问题与建议
结束语
参考文献
致谢
五、亟需解决的问题与建议
1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。
2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学
六、进度安排
20XX年11月01日-11月07日 论文选题。
20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。
20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。
20XX年12月10日-12月19日 确定并上交开题报告。
20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。
20XX年02月16日-02月20日 完成论文修改工作。
20XX年02月21日-03月20日 定稿、打印、装订。
20XX年03月21日-04月10日 论文答辩。
七、参考文献
[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.
[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.
[3]范森林.中国政治思想的起源[M/OL].
[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.
[5]郑毓信.数学哲学的内容和意义[J/OL].
[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
[7]顾沛.数学文化[M],北京:高等教育出版社,2008.
[8]南开大学数学文化课程简介.
[9]吉林大学本科生数学文化课程教学大纲--数学文化.
[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.
[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).
[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.
[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.
[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.
[16]数学地质四川省高校重点实验室.
[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.
数学小课题开题报告
在教学中引导学生掌握审题的具体步骤和方法。以下是我为大家分享的2017年关于数学小课题的开题报告范文。
题目:初中数学主体合作学习方式的探究开题报告
一.本选题的意义和价值:
理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。
应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。
通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。
省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。
二 研究内容、目标、思路
什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。
学习方式现状的调查与分析。
目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。
主体合作学习在学习数学中的作用。
高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。
教师在主体合作学习中的角色和地位。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。
如何引导学生合作学习?
引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。
小组学生合作学习评价对象和方法。
评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。
本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。
在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。
研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。
研究方法:
②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。
④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。
⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。
⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。
研究阶段
⑴准备阶段(2015年4月 2015年5月):
⑵实施过程(2015年6月 2015年1月)
根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。
⑶总结阶段(2015年2月 2015年5月)
在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。
课题研究的现实背景和意义:
从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。
可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。
通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。
审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。
概念界定与理论依据
理论依据 :
在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。
课题的实施方案
研究内容
研究农村小学生审题能力弱的原因。
研究农村小学生数学学习审题能力培养方案。
针对学习内容,研究学生审题的方法。
研究农村小学生数学学习审题习惯的培养。
具体的操作措施
研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。
针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。
研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。
在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。
农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。
研究步骤与方法
第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。
方法的选择:
(1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。
(2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。
(4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。
(5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。
研究预期成果和成果形式
(1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。
(2)课题研究报告一份。
我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功!
论文题目:关于泰勒公式的应用
课题研究意义
在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?
通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述
主要内容
Taylor公式的应用
Taylor公式在计算极限中的应用
对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限:
(1)用洛比达法则时,次数较多,且求导及化简过程较繁;
(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;
(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用
有关一般不等式的证明
针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:
(1)写出比最高阶导数低一阶的Taylor公式;
(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明
针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
有关定积分等式的证明
针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。
证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor
余项作适当处理。
Taylor公式在近似计算中的应用
利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。
研究方法
为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。
进度计划
为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。
190 浏览 3 回答
340 浏览 2 回答
148 浏览 4 回答
135 浏览 3 回答
188 浏览 2 回答
177 浏览 7 回答
218 浏览 2 回答
301 浏览 3 回答
166 浏览 2 回答
98 浏览 5 回答
169 浏览 3 回答
111 浏览 2 回答
96 浏览 2 回答
293 浏览 3 回答
267 浏览 5 回答