分子生物技术在微生物降解环境 污染物中的应用 [摘要〕介绍了与环境微生物关键降解酶基因的筛选、克隆及应用相关的分r生物技术,包括聚合酶链式反应技 术、基因重组技术、荧光原位杂交技术和生物信息学等技术,并对这些技术在污染物降解基因检测、筛选和克隆方 面的应用进行了阐述与探讨、 [关键词]分子生物技术;微生物;基因;环境污染物;降解 随着现代j:\地技术的发展,多环芳烃、含氯有 机物和硝基苯类化合物等人工合成井难以降解的 污染物大量排放,造成世界范围内的环境污染和生 态破坏,严重地威胁人类和其他生物的正常生存和 发展。利用微生物修复技术对受污染的水体及土 壤进行处理,凸显了其重要的意义和可行性。研究 人员发现并筛选到一些微生物,它们不仅对环境有 较高的适应性、对污染物有较高的耐受性,而且对 污染物有较强的降解效率和专一性。然而环境中 存在的大量微生物中仅有少于1%可通过传统的培 养方法进行培养、分离和纯化,绝大多数细菌需要 非常严格的营养条件川。因此,为了对修复环境有 所贡献却难以培养的微生物进行更全面了解,也为 了筛选到更多有利于降解环境污染物的微生物菌 种及其关键酶基因,分子生物技术和手段逐渐被广 泛应用到环境可降解污染物及降解机理方面的研 究中。 本文对近年来发展起来的聚合酶链式反应 (PCR)技术、基因重组技术、荧光原位杂交(FISH) 技术和生物信息学等多种分子生物技术进行了介 绍,并总结了它们在污染物降解基因检测、筛选和 克隆方面的应用。 1与环境污染物降解相关的分子生 物技术 及其相关技术 PCR是一种利用脱氧核糖核酸(DNA)半保留 复制原理,在体外扩增位于两段已知序列之间的 DNA区段从而得到大量拷贝的分子生物技术。根 据其模板、引物来源或扩增条件的不同,PcR技术 可分为以下几种:(l)反转录pCR(RT一PeR)技 术,将mRNA反转录为cDNA后再对其进行PCR 扩增,可用来构建cDNA文库,分析不同生长时期 的mRNA表达状况和相关性以及mRNA的定量测 定等;(2)巢式PCR技术,在扩增大片段目的DNA 时,先用非特意性引物扩增再用特意性引物对第一 次扩增产物进行第二次扩增,以获得可供分析的 DNA;(3)竞争PCR技术,是一种定量PCR,向PCR 反应体系中加人人工构建的带有突变的竞争模板, 通过控制竞争模板的浓度来确定目的模板的浓度, 对目的模板作定量研究;(4)实时荧光定量PCR技 术,在PCR反应体系中加人荧光基团,利用荧光信 号积累实时监测整个PCR进程,最后通过标准曲线 对未知模板进行定量分析,该法已广泛用于基因表 达研究、转基因研究等方面;(5)扩增的rDNA限制 酶切分析技术,根据原核生物rDNA序列的保守性, 将扩增的rDNA片段进行酶切,通过酶切图谱来分 析菌间的多样性;(6)RNA随机引导PCR技术,基 于任意寡核昔酸引物与RNA之间可能的配对,在 低严谨度条件下经聚合酶催化使链延伸,将细胞总 RNA或InRNA作为反转录反应的模板,此技术结 合单链构象多态性,用非变性胶分辨大小相同而构 象不同的片段,可用于诊断遗传突变及分析污染条 件下序列的多态性;(7)随机扩增多态DNA (RAPD)技术,是一种基于PCR检测PCR引物结合 位点序列改变的方法,通常以10bp的寡核昔酸序 列为引物,对基因组DNA随机扩增,电泳分离染色 扩‘增产物,再分析多态性。 技术 FISH技术利用荧光标记的探针在细胞内与特 异的互补核酸序列杂交,通过激发杂交探针的荧光 来检测信号。荧光探针比放射性探针更安全,具有 较好的分辨力,不需要额外的检测步骤。近年来, 由于FISH技术具有灵敏、便捷等优点,迅速发展完 善成为研究环境微生物的有力工具。此外,可用不 同激发和散射波长的荧光染料标记探针,在一步反 应中同时检测几个靶序列。该技术主要包括试样 固定、预处理、预杂交、探针和试样变性、杂交、漂洗 去除未结合的探针、检测杂交信号等步骤。由于 165rRNA具有遗传稳定性,因此成为FISH技术检 测最常用的靶序列。 基因重组技术 基因重组技术是从供体生物的基因组中通过 酶切扩增等手段获取目的基因,与载体连接形成重 组DNA分子,再导入到受体细胞中,让外源基因得 以表达。在已经分离出的许多菌株中,与降解能力 有关的基因多在质粒体上。由于质粒很容易在细 菌的繁殖过程中遗失,对细菌降解能力的长期稳定 非常不利,可将其与污染物降解有关的酶基因重组 到大肠杆菌等微生物中进行表达,以此构建的各种 生物降解特性增强的重组菌可用于污染环境的治 理修复或发酵某些废弃物。 生物信息学 20世纪后期,生物学的迅猛发展,从数量上和 质量上极大地丰富了基因组数据库、蛋白质数据 库、酶数据库和文献数据库等许多生物科学的数据 资源。已有多个国家和国际科研组织建立了生物 信息数据库,如欧洲分子生物学实验室(Eur叩ean MolecularBiologyLaboratory)核酸序列数据库和美 国国家生物技术情报中心(Nationaleente:fo:Bio- technologyInformation,NCBI)基因序列数据库等。 科学家利用计算机及生物信息分析软件分析这些 数据资源,确定大分子序列、结构、表达模式和生化 途径与生物数据之间的关系,区分生物个体间遗传 差异,揭示DNA多样性。例如,基本局部比对搜索 工具(BasieLoealAlignmentSearehTool,BLAST), 是一套在蛋白质数据库或DNA数据库中进行相似 性比较的分析工具。它基于Altschul等的方法「2〕, 在序列数据库中对查询序列进行同源性比对工作。 BLAST程序可对一条或多条、任何数量、任何形式的 序列在一个或多个核酸或蛋白序列库中进行比对,甚 至将有缺口的比对序列也考虑在内,利用比较结果中 的得分对序列进行相似性说明。基因的序列分析可 揭示出生物物种之间的关系,在污染治理研究中可用 于生物基因组特殊区域或特异基因的测序。 2分子生物技术在环境污染物降解 中的应用 土壤试样总DNA的提取 用适当方法直接从土壤中提取DNA并纯化, 是从分子生物学角度对土壤微生物进行研究的前 提条件,而后可进行酶切、PCR扩增、核酸分子杂交 等分子生物学技术操作。从土壤中提取微生物 DNA主要分为汽接法和间接法}’{。直接法是在 ogram等的方法基础卜发展起来的,其主要包括2 个步骤:(l)原位细胞裂解;(2)DNA提取和纯化。 直接法提取的DNA超过细菌总DNA的60%且省 力,但提取的DNA常常有折断、腐殖酸污染、甚至 提取物中还夹杂有未知的胞外DNA和真核生物的 DNA。最先报道间接法的是Faegri等[‘〕,其主要包 括4个步骤:(l)分散土壤;(2)分离细胞与土壤; (3)细胞裂解;(4)DNA纯化。间接法提取DNA 产量低且费力,但纯度较高、DNA损伤小,提取的 大片段DNA可用来构建cos而d和细菌人工染色体 文库等。 采用PCR及相关技术扩增分析DNA片段 可降解污染物的微生物必然能产生分解代谢 该污染物的酶。selvaratnam等L’l用编码苯酚单加 氧酶dmpN摹因的RT一PCR技术来检测序列间歇 式活性污泥反应器‘{一,降解酚的假单胞菌。检测结 果表明,RT一PCR技术不仅能检测微生物降解酚的 能力,还能测量dmpN基因的转录水平,从而确定假 单胞菌特殊的分解活性,发现了在转录水平下,酚 浓度与通气时间之问存在正相关关系。 将PCR技术和变性梯度凝胶电泳(DGGE)结 合起来,在变性条件适当的情况下能分辨一个碱基 对,分辨率较高。染色后的凝胶用成像系统进行分 析,可在一定程度l几反应试样的复杂性。条带的多 少能反应试样「 一 }1微生物组成的差异,条带的亮度能 反应试样中微生物的多少。基于以上优点,日前该 技术在微生物群落结构的分析和动态研究方面得 到了厂‘泛应用。DGGE可通过分析PCR扩增的基 因点突变来探索微生物的复杂性。徐玉泉等[“〕从 某废水中分离出一株能以苯酚为惟一碳源的菌株 PHEA一2,使用PCR一DGGE技术对该菌165 rDNA进行分析,发现该菌与醋酸钙不动杆菌同源。 M盯sh等r了)利用PcR一DGGE技术获得了活性污泥 中真核微生物的种群变化情况。王峰等下8〕采用 PCR一DGGE技术对城市污水化学生物絮凝处理中 活性污泥和生物膜微生物种群结构进行了分析,结 果表明活性污泥培养前后微生物种群结构发生r 很大改变。 RAPD技术也是一种应用比较广泛的以多态性 引物来扩增某些片段的技术。RAPD技术可用于检 测含有混合微生物种群的各种微生物反应器中微 生物的多样性。用RAPD技术分析检测实验室规 模的油脂淤泥培养料中的细菌菌群发现,用油脂淤 泥改良过的培养料比未改良的更适于不同的微生 物种群生长[9j。vainio等t’。〕从516种孤立的菌落 中提取出165rDNA,经PCR扩增后进行测序,检测 活性污泥中微生物种群的结构。这些组合技术的 应用显著增强r对微生物的检测和鉴定能力,为理 论研究工艺优化及提高生物处理效率提供了条件。 基因重组 基因工程技术应用于环境保护起始于20世纪 80年代。其基本原理是通过基因分离和重组技术, 将目的基因片段,比如可编码降解某种污染物的 酶,转移到受体生物细胞中并表达,使受体生物具 有该目的基因表达显现的特殊性状,从而达到治理 污染的目的。找到特定污染的抗性基因,利用基因 重组技术转基因后也可获得其他抗性植株以及筛 选到可转化污染物的植物,还可开发超量积累植物 进行污染土壤的生物修复。 罗如新等L”〕用放射性同位素标记tfdc基因片 段作探针,Southemblot杂交定位Ll菌株的邻苯二 酚1,2一双加氧酶基因位于Pstl的I片段和BamH I的M、N片段,回收并将其直接克隆至表达载体 pKT230卜,获得的重组子能转化不具开环酶活性 的甲胺磷降解菌P2,得到高于天然宿主21倍的邻 苯二酚1,2一双加氧酶。stingley等{”〕通过构建基 因文库和重组质粒等基因工程方法证实了NidAB 双加氧酶是降解菲的关键酶类,并首次鉴定出此基 因通过磷苯二甲酸实现降解功能。chae等‘”}发现 不能降解苯酚的su如lobusso扣taricu、98/2菌株中 的儿茶酚2,3一双加氧酶基因与能降解苯酚的 sulfolo右u,,o如taricu、咫有[6J源区,分析得知它们 是山共同祖先进化而来。把儿茶酚2,3一双加氧酶 基因克隆到大肠杆菌中表达,可获得有较高降解活 性的双加氧酶。 重金属污染是环境污染的重要方面之一。随 着分子生物学技术的发展,越来越多的修复性蛋白 基因正被从植物、微生物和动物中陆续分离出来, 如汞离子还原酶基因、有机汞裂解酶基因、汞转运 蛋自基因、金属硫蛋白基因、植物络合素合成酶基 因、铁离子还原酶基因和锌转运蛋白基因L’‘〕。这些 基因通过基因工程的改造,重组到合适的受休细胞 中表达相应的蛋白质和酶,达到治理难以降解的有 毒有害污染物的目的。sorsa等〔”〕把MTS插人 LamB序列的153位点,在中表达MTs,解决 r细胞内MTs对金属离子有限的吸附能力。综L 所述,基因重组技术具有快速、高效的特性,已逐渐 成为环境生物技术的研究热点。 技术 FISH技术利用核糖体内长度适中(约1500bp)、 高度保守的165:RNA序列作为理想的基因分类靶 序列,其中使用的165:RNA寡核普酸探针一般是 进行了荧光标记的20bp左右特异性核昔酸片段, 利用该报告分子(如生物素、地高辛)与荧光素标记 的特异亲和素之间的免疫化学反应,经荧光检测系 统对待测DNA进行定性、定量或相对定位分析。 FISH技术能提供处理过程中微生物的数量、空间分 布和原位生理学等信息。 硝化细菌是一类生理上非常特殊的化能自氧 菌,传统的研究方法要经过富集、分离、分类和鉴定 步骤,耗时长。HSH技术的引人解决了上述困难。 FlsH技术还被广泛用于活性污泥系统、硝化流化床 反应器和膜生物反应器等废水处理系统}’61。 基因工程微生物越来越多地被用于农业害虫 控制和环境污染的生物修复,对人类健康和环境的 影响引起广泛关注。1994年出现了一种新的标记 系统:绿色荧光蛋白(GFP),由于GFP基因表达产 物对细胞没有毒害作用,且由GFP产生的荧光标记 检测卜分方便、简单。在某些被污染的环境中可分 离出降解该污染物的细菌,通过基因重组等手段使 用GFP分子标记,可更容易的分离检测被标记的 细胞叫。 Bastes等[’8]进行了苯酚降解菌染色体GFP基 因标记实验。通过PCR和Southemblot分析,证明 GFP基因已成功整合到宿主细胞的染色体中。对 标记菌与野生型的降解能力比较结果证明,GFP分 子标记的插人并不影响细胞的苯酚降解能力。 用G即标记Pseudomonasputida,研究活性淤 泥中细菌存活情况{’9飞。Pseudomonasputida被转到 活性淤泥2min后,观察到细胞在淤泥絮凝物间自 由游动;培养3d后,发现荧光细胞减少,大部分已 被合并到淤泥絮凝物中,以防止细菌被原生动物捕 食。用oFP标记石.eozi和Serraliamarceseern,考 察菌株附到絮凝物卜的过程{’()j。使用表面荧光显 微镜能将带有GFP标记的细胞从活性污泥中区分 开,井进行观察和记数。而聚焦激光扫描显微镜 (cLsM)可使GFP标记细菌产生三维轮廓,结合表 面荧光显微镜和CLSM观察GFP标记细胞,结果表 明,细胞表面疏水性在细菌附到絮凝物的过程中起 重要作用,两种细菌附在絮凝物上的模式有很大不 同,通过这种方法可更好地理解细菌赫附机理,有 助于提高废水处理效果。 3结语 分子生物技术的应用使研究人员可从微观的 角度更细致深人地了解微生物对污染物降解的具 体生理生化机制,在分子水平 _ _ [揭示生物体吸收、 迁移、积累有害物质最终被毒害,及适应、抗性等生 态问题,从而筛选到更多有利用价值的微生物。随 着越来越多微生物全部基因序列的解码,对各种细 菌体内可降解基因的分布和表达会有更深人的了 解,有关技术的发展和成熟必将对污染物的降解过 程有一个整体的、生态水平上的认识。 参考文献 l李凤,刘世贵 . 分子生物学技术在环境微生物研究中的 应用 . 世界科技研究与发展,2003,25(4):88一92 2AltsehulSF,GishW,MillerW, mentsearehtool . JMolBiol,1990,215(3):403一410 3魏志琴,曾秀敏,宋培勇 . 土壤微生物DNA提取方法研 究进展 . 遵义师范学院学报,2006,8(4):53一56 4FaegriA,TorsvikVL,]andfunga] aetivitiesin5011:seParationofbacteriaandfungibyaraPid fraetionatedeentrifugationteehnique5011BiolBioehem, 1977,9(2):105一112 5SelvaratnamS,SehoedelBA,MeFarlandBL,etal APPlieationofreversetranseriPtasePCRformonitoring exPressionoftheeataboliedmPNgeneinaPhenol- degradingsequencingbatehreaetor . APPIEnviron Microbiol,1995,61(11):3981一3985 6徐玉泉,张维,陈明等 . 一株苯酚降解菌的分离和鉴 定 . 环境科学学报,2000,20(4):450一455 7MarshTL,LiuWT,ForneyLJ . Beginningamoleeular analysisoftheeukiU洲aleollllllunityinaetivatedsludge. WaterSeiTechnol,1998,37(4一5):455一460 8王峰,傅以钢,夏四清等.PCR一DGGE技术在城市污 水化学生物絮凝处理中的特点 . 环境科学,2004,25 (6):74一79 9涂书新,韦朝阳 . 我国生物修复技术的现状与展望 . 地 理科学进展,2004,23(6):20一31 10VainioEJ,MoilanenA,KoivulaTT,etal . ComParison ofpartial165rRNAgenesequeneesobtainedfromactiva- tedsludgebaeteria . APPIMierobiolBioteehnol,1997,48 (l):73一79 11罗如新,张素琴,李顺鹏 . 邻苯二酚1,2一双加氧酶
2个问题 都回答了``` 不一样的2篇论文 你可以参考下摘 要 针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。关键词 现代生物技术 生态环境 环境保护1 我国生态环境现状目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。2 现代生物技术与环境保护现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪 80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。(1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。(2) 利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。(3)生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。3 现代生物技术在环境保护中的应用 污水的生物净化污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。污染土壤的生物修复重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。 白色污染的消除废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-β羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。 化学农药污染的消除一般情况下,使用的化学杀虫剂约80%会残留在土壤中,特别是氯代烃类农药是最难分解的,经生态系统造成滞留毒害作用。因此多年来人们一直在寻找更为安全有效的办法,而利用微生物降解农药已成为消除农药对环境污染的一个重要方面。能降解农药的微生物,有的是通过矿化作用将农药逐渐分解成终产物CO2和H2O,这种降解途径彻底,一般不会带来副作用;有的是通过共代谢作用,将农药转化为可代谢的中间产物,从而从环境中消除残留农药,这种途径的降解结果比较复杂,有正面效应也有负面效应。为了避免负面效应,就需要用基因工程的方法对已知有降解农药作用的微生物进行改造,改变其生化反应途径,以希望获得最佳的降解、除毒效果。要想彻底消除化学农药的污染,最好全面推广生物农药。所谓生物农药是指由生物体产生的具有防止病虫害和除杂草等功能的一大类物质总称,它们多是生物体的代谢产物,主要包括微生物杀虫剂、农用抗生素制剂和微生物除草剂等。其中微生物杀虫剂得到了最广泛的研究,主要包括病毒杀虫剂、细菌杀虫剂、真菌杀虫剂、放线菌杀虫剂等。长期以来并没有得到广泛的使用。现在人们正在利用重组DNA技术克服其缺点来提高杀虫效果,例如目前病毒杀虫剂的一个研究热点是杆状病毒基因工程的改造,人们正在研究将外源毒蛋白基因如编码神经毒素的基因克隆到杆状病毒中以增强杆状病毒的毒性;将能干扰害虫正常生活周期的基因如编码保幼激素酯酶的基因插入到杆状病毒基因组中,形成重组杆状病毒并使其表达出相关激素,以破坏害虫的激素平衡,干扰其正常的代谢和发育从而达到杀死害虫的目的。参考文献1 孔繁翔. 环境生物学[M]. 北京:高等教育出版社,20002 陈坚. 环境生物技术[J], 生物工程进展,2001(5)3 姜成林,徐丽华. 微生物资源的开发与利用[M].北京:中国轻工业出版社,2001
微生物技术在城市生活垃圾处理中的应用 摘要:本文结合堆肥化、卫生填埋两种现行的城市生活垃圾处理工艺,主要介绍了城市生活垃圾生物处理过程中的微生物种群,以及通过分析开发出的新的微生物技术,指出了应用于城市生活垃圾处理的高效的微生物技术的研究方向。 关键词:城市生活垃圾 微生物 强化微生物处理技术 基因工程 ; 随着城市化进程在全球范围的加速,城市化带来的污染和人类聚居状况恶化等问题,已成为世界各国共同关心的问题。城市生活垃圾(Municipal solid waste, 简称MSW)是在城市日常生活及为城市生活提供服务的活动中产生的固体废弃物,是城市环境的主要污染物之一。目前,城市生活垃圾处理处置的方法主要包括卫生填埋(Sanitary landfill)、堆肥化(Composting)、焚烧(Incineration)三种,其中前两种处理方式均属于生物处理技术。具体来说,MSW生物处理技术就是城市生活垃圾中固有的或外添加的微生物,在一定控制条件下,进行一系列的生物化学反应,使得MSW中的不稳定的有机物代谢后释放能量或转化为新的细胞物质,从而MSW逐步达稳定化的一个生化过程。 1. 城市生活垃圾生物处理中主要的微生物。。。
1923 年开始在汽油中加入铅用作抗爆剂以后, 更加速了全球性铅的污染。因此可以说如今世界上已难找到土壤铅含量不受人类活动影响的一片“净土”。Kabata - Pendias 和Rendias[5 ]报道在靠近公路的某一块土壤铅含量高达7000μg/ g。潘如圭等[6 ]研究了汽车尾气中铅对公路两侧蔬菜的污染情况。试验结果表明: 在公路两侧200 m 范围内生长的蔬菜均受到汽车尾气中铅的污染。管建国[7 ]等研究了在金属冶炼厂周围和公路两侧200 m 范围内蔬菜的受污染情况, 发现所调查的普通叶菜的铅含量均超过国家食品卫生标准。彭珊珊等[8 ]对我国一些常用茶中Pb 进行了测定, 结果表明茶叶中的铅超过一般标准, 应引起重视。土壤中的铅大部分形成PbS , 少部分形成PbCO3 、PbSO4 和PbCrO4 等无机化合物, 或与有机物螯合。铅的无机化合物大多难以溶解, 而且因受到下列因素影响, 铅在土壤中的迁移能力也很弱: (1) 土壤有机质对铅的络合作用。土壤有机质的—SH , —NH2 基因能与铅离子形成稳定的络合物。(2) 土壤粘土矿物对铅的吸附作用。粘土矿物的阳离子交换位点可对铅离子进行交换性吸附。另外, 铅离子进入水合氧化物的配位壳, 直接通过共价键或配位键结合于固体表面。由于铅在土壤中迁移能力弱, 而且溶解度低, 因而人为因素造成的铅污染大多停留在土壤表层, 随土壤深度的增加其含量急剧降低, 20 cm 以下趋于自然水平。进入土壤中的铅有可能被植物吸收, 或溶解到地表水中, 通过食物链和饮用水进入动物和人体, 进而影响人类健康。近年来的研究发现, 铅对人类健康的影响具有不可逆性和远期效应[9 ] 。Page[2 ]等研究表明, 人体血铅与土壤铅含量存在一定关系:0112 (Pb - B , μg/ 100mg) = ln (Pb - S ,μg/ g) - 4185这一关系式仅说明了某一地区的特殊情况, 并无广泛适用价值, 但它足以表明土壤铅含量与人体健康有直接关系。2 铅污染土壤的修复技术由于铅对人体具有很强的毒性, 近年来对铅污染土壤的修复引起了人们的普遍关注。铅污染土壤的修复技术可以分为两大类: 物理化学修复技术和生物修复技术。物理化学修复技术又可分为隔离包埋技术、固化稳定技术、Pyrometallurgical Separation 、化学稳定技术和电动修复技术等。生物修复技术又可分为微生物修复技术和植物修复技术等。211 隔离包埋技术(isolation and containment)该法采用物理方法将铅污染土壤与其周围环境隔离开来, 减少铅对周围环境的污染或增加铅的土壤环境容量。具体措施为: 以钢铁、水泥、皂土或灰浆等材料, 在污染土壤四周修建隔离墙, 并防止污染地区的地下水流到周围地区。其中以水泥最为便宜, 应用也最为普遍。为减少地表水的下渗, 还可以在污染土壤上覆盖一层合成膜, 或在污染土壤下面铺一层水泥和石块混合层。212 固化稳定技术(solidification and stabilization)固化稳定技术包括两个方面: 采用化学方法降低铅在土壤中的可溶性和可提取性, 同时采用物理方法将污染土壤包埋在一个坚固基质中。Wheeler 报道[10 ]将水泥、炉渣和石灰混合物加入污染土壤中, 搅拌均匀凝固之后, 形成一个大石块, 将污染土壤包埋在其中。也有人采用电导产热原理给土壤加热升温, 当土壤冷却后, 土壤凝固成玻璃样块状结构, 称之为玻璃化。该方法包括三个具体步骤: (1) 在土壤两端插上电极电流通过土壤形成环路, 土壤温度上升并熔化。(2) 在自然冷却过程中, 土壤凝固形成玻璃样土块。(3) 在土块上覆盖一层干净土壤。这一技术已经实际应用于铅污染土壤的修复。·13 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights Pyrometallurgical Separation在一定温度下, 金属就会熔解或升华为气态。Pyrometallurgical separation 技术利用这一原理,将铅等重金属从污染土壤中“蒸发”出来以达到净化土壤的目的。“蒸发”出来的金属可以再回收或固定, 同时富含金属的剩余炉渣也可用于进一步提炼[11 ] 。铅污染土壤在高温熔化之前要进行预处理, 以促进铅的熔解。这一技术主要应用于具有较高回收效率的严重污染土壤(5 %~20 %) 。214 化学稳定技术(chemical stabilization)化学稳定技术就是应用化学反应将污染土壤中的重金属氧化或还原, 从而达到降低土壤中重金属的活性[11 ] 。对于铅污染土壤, 可用还原剂(二氧化硫、亚硫酸盐或硫酸亚铁) 将铅离子还原, 以减少土壤中铅的可提取量。这一技术也可作为其他修复技术(如固化稳定技术) 的前处理步骤。但必须注意的是, 还原剂的施用可能会造成二次污染。初步研究表明, 施用石灰调节土壤PH7 可降低铅在土壤中的溶解度, 减少植物对铅的吸收[13 ] 。研究表明, 施用羟基磷灰石[14 ] 、水合氧化锰[15 ] 、磷灰岩[16 ,17 ]也可促进铅的沉淀, 减少土壤中的可溶态和可提取态铅。Vidac 和Pohland[18 ]已将这一技术运用于地下水的修复。215 电动修复技术(electrokinetice technology)在污染土壤两端插上电极, 接通电源后, 土壤中的带电粒子向电性相反的电极移动, 最终积聚或沉淀在电极上, 以达到清除污染土壤中重金属的目的。在欧洲, 这一技术不仅应用于铅污染土壤[19 ] , 同时也应用于铜、锌、铬、镍和镉等污染土壤的修复。216 微生物修复技术(microremediation)微生物修复主要是借助微生物的生化反应来清除或稳定环境中的有害物质。根据原理不同可分为生物还原沉淀、生物甲基化和生物吸附三种。生物还原沉淀是应用硫酸还原菌(SRB) 将硫酸根还原为HS - 再与铅生成不溶性的Pb2S。生物甲基化是利用微生物将土壤中的重金属甲基化,甲基化的金属更容易蒸发, 可做为Pyrometallurgical Separation 的预处理。生物吸附是利用细菌细胞和藻类来吸附地下水或其他污染水体中的有害物质。Leusch 等[20 ]报道一种海藻( S . f luitans )对铅的最大吸附量可达到369 mg/ g。Rahmani 等[21 ]研究了浮萍(Lemna minor) 对污染水体中铅的清除能力。结果表明浮萍在亚致死水平下也能有效清除水体中的铅。217 植物提取修复技术(phytoextration)植物提取修复技术主要是利用超积累植物, 将土壤中各种过量元素或化合物大量转移到植株体内特别是地上部分, 从而修复污染土壤[22 ] 。超积累植物相当于一个太阳能驱动泵将土壤中的过量元素不断泵到植株体内[23 ] 。植物修复技术可分为两种, Salt 等[24 ]把利用超积累植物来吸收土壤重金属的方法称之为持续植物提取(continuous phytoextraction) ; 而把利用螯合剂来促进植物吸收土壤重金属的方法称之为诱导植物提取(inducced phytoextraction) 。21711 持续植物提取(continuous phytoextraction)运用持续植物提取技术来修复铅污染土壤的关键是植物超积累铅的能力。一般认为, 只有铅积累量达到1000μg/ g (干重) 才能称为铅超积累植物[25 ] 。已见报道的铅超积累植物有Brassica .nigua [26 ] , Brassica . pekinensis [27 ] , Brassica . juncea [27 ]和T. rotungifolium [28 ] 。其中T. rotungi2folium 的铅积累量最大, 可达到8200μg/ g (干重) [28 ] 。目前对于植物吸收、运输和积累铅以及耐铅胁迫的机制研究甚少。Liu 等[29 ]研究发现印度芥菜( Brassica juncea) 可在根部积累大量的铅但只有极少部分运输到地上部。原因一方面可能是由于根部细胞内存在高浓度磷酸盐或碳酸盐,在细胞内近中性pH 条件下, 铅主要以磷酸盐或碳酸盐形式沉淀在根细胞壁或细胞内; 另一方面·14 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.铅从根部向中柱迁移的过程还会受到内皮层凯氏带的阻拦。Wozny 等[30 ]认为铅进入中柱后随蒸腾流被动运输到地上部分。运输过程中铅可能会与中柱内的阳离子交换位点结合, 从而被固定在茎部中柱内。研究表明, 铅可与多种小分子有机物螯合[31~33 ] 。推测铅也有可能与各种小分子有机酸、植物螯合肽结合, 减少与阳离子交换位点结合的机会, 从而增加进入了叶部的数量。作者在对浙江西部的某一铅锌矿土壤进行调查时, 发现一种可高浓度积累铅和锌的植物, 据初步调查结果, 其地上部分锌和铅的最高积累量分别达到了5000μg/ g 和1182μg/ g。对于这种植物超积累锌和铅的生理生化机制, 正在进一步的研究中。21712 诱导植物提取(inducced phytoextraction)对于在土壤中极难移动的铅元素, 施用螯合剂可促进植物对其的吸收。施用螯合剂诱导植物超富集作用被称为螯合诱导修复技术。Romheld 和Marschner[34 ]认为螯合物与金属结合后, 金属螯合物可以从内皮层裂口处进入根内, 然后被迅速地转移到茎叶。在用14C - EDTA - Pb 作标记的试验中, Blaylock 等[35 ]发现, 在含这种标记物的介质中生长的植物地上部能快速积累铅, 表明铅与螯合物结合有利于植物对铅的吸收。Salt 等[36 ]认为金属与螯合物结合后阻止了金属的沉淀和吸附, 从而提高了金属的可提取性。螯合诱导修复技术既可选用一般植物也可选用超积累植物。在土壤铅浓度为2500μg/ g 的污染土壤上种植玉米和豌豆, 加入EDTA 后, 植物地上部铅的浓度从500μg/ g 提高到10000μg/ g ; 而且EDTA 还能极大的提高铅从根系向地上部的运输能力,每千克土中加入110 g EDTA , 24 h 后, 玉米木质部中铅的浓度是对照的100 倍, 从根系到地上部的运输转化量是对照的120 倍[37 ] 。不同螯合剂促进植物对铅吸收的效应与螯合剂促进铅从土壤解吸的效应相一致: EDTA > HEDTA >DTPA > EGTA > EDDHA。螯合诱导技术对超积累植物吸收金属的强化效应也很明显。印度芥菜是一种可富集多种金属的植物。Blaylock 等[35 ]研究了柠檬酸、苹果酸、乙酸、EDTA、EGTA、CDTA 对印度芥菜( Brassica juncea) 吸收Cd 和Pb 的效应,发现土壤酸化与施加螯合物相结合可显著增加铅的吸收效率。Vassil 等[38 ]报道用铅和EDTA 共同处理印度芥菜, 其地上部分含量高达55 mmol/ kg (干重) , 相当于培养液铅浓度的75 倍。对印度芥菜茎部提取液的直接测定证明, 茎部的大部分铅是与EDTA 结合的形式运输的。由于螯合剂的价格一般较贵, Blaylock 等[35 ]指出螯合剂( EDTA 和乙酸) 将使每吨铅污染土壤修复成本增加715 美元。此外螯合剂在增加土壤中重金属生物有效性的同时, 也增加了重金属离子的移动性。因而对于螯合诱导修复技术的环境风险应加以系统评价。由于已发现的铅超积累植物种类极少, 而且植物生长慢、生物量小, 因而螯合诱导修复技术比持续提取技术更引人注目。但不论哪种植物修复技术都具有其它物理化学方法所没有的优点:(1) 成本低。据估计, 如果某种植物的茎部铅积累量达到1 % , 且每年产量40 t/ hm2 , 那么通过10 年种植将土壤铅含量从114 %下降为014 %所需费用是245000 美元, 而用物理化学修复技术则需要1600000 美元。(2) 植物利用太阳能, 不破坏生态平衡, 同时还能美化环境, 易为公众所接受。(3) 将富铅植物残体用于植物炼矿, 可产生经济效益。相比之下, 虽然植物修复技术所需时间较长, 而且植物的生长要受到环境的影响, 但这些缺点都不成为重要问题。可以预言, 植物修复将成为一种应用广泛、环境良好和经济有效的修复铅污染土壤的方法。参考文献:[3 ] 陈怀满等. 土壤- 植物系统中的重金属污染[M] . 北京: 科学出版社, 1996.[4 ] Nriagu J O , Acyna J M. Quantitative assessment of worldwide contamination of air , water and soil by trace metal[J ] . Nature , 1988 , 333 : 134~139.[5 ] Kabata - Rendias A , Rendias H. Trace elements in the soil and plant [M] . Florida CRC Press , 1994.[6 ] 潘如圭, 宋佩扬. 汽车尾气中铅对蔬菜污染的研究[J ] . 江苏环境科技, 1998 , 11 (3) : 9~11 , 28.[7 ] 管建国, 潘如圭. 蔬菜铅污染状况及其防治对策[J ] . 南京农专学报, 1998 , 14 (3) : 22~27.[8 ] 彭珊珊, 石燕. 茶叶中的铅[J ] . 广东微量元素科学, 1998 , 5 (6) : 32~33.[9 ] 沙拉麦提, 沙达提. 儿童的铅接触及危害[J ] . 新疆环境保护, 1996 , 18 (1) : 36~38.[10 ] Wheeler P. Leach repellent [J ] Ground Engng , 1995 , 28 : 20~22.[11 ] USEPA. Engineering Buttetin : Technology Alternatives for the Remediation of Soils Contaminated with Arsenic ,Cadmium , Mercury and Lead [M] . U S Envionmental Protection Agency. Office of Emergency and RemedialResponse , Cincinnati . OH. 1996.[12 ] Evando C R , Dzombak D A. Remediation of metals - comtaminated soils and groundwater . Technology Evalua2tion Report , TE97 - 01 [ R ] . Pittsburgh P A. Ground - water Remediation Technologies Analysis Center ,1997.[13 ] Hooda P S , Alloway B J . The effect of liming on heavy metal concentrations in wheat , carrots and spinach grownon previously sludge - applied soils [J ] . J Agric Sci , 1996 , 127 : 289~294.[14 ] Ma L Q. Factors influencing the effctiveness and stability of aqueous lead immobolization by hydroxyapatite [J ] .J Environ Gual , 1996 , 25 (6) : 1420~1429.
313 浏览 4 回答
299 浏览 4 回答
86 浏览 3 回答
336 浏览 2 回答
253 浏览 4 回答
285 浏览 4 回答
233 浏览 3 回答
90 浏览 3 回答
333 浏览 6 回答
314 浏览 4 回答
204 浏览 2 回答
336 浏览 4 回答
236 浏览 3 回答
241 浏览 2 回答
179 浏览 5 回答