Automaticspeechrecognition(ASR)tasksareresolvedbyend-to-enddeeplearningmodels,whichbenefitsusbylesspreparationofrawdata,andeasiertransformationbetweenlanguages.Weproposeanovelend-to-enddeeplearningmodelarchitecturenamelycascadedCNN-resBiLSTM-CTC.Intheproposedmodel,weaddresidualblocksinBiLSTMlayerstoextractsophisticated…
Inthispaper,phoneticfeaturesderivedfromthejointacousticmodel(JAM)ofamultilingualendtoendautomaticspeechrecognitionsystemareproposedforIndianlanguageidentification(LID).ThesefeaturesutilizecontextualinformationlearnedbytheJAMthroughlongshort-termmemory-connectionisttemporalclassification(LSTM-CTC)framework.Hence,thesefeaturesarereferredtoas...
论文《End-to-endSequenceLabelingviaBi-directionalLSTM-CNNs-CRF》的代码实现CNN卷积神经网络实现语音识别.zip目的:使用CNN卷积神经网络实现语音识别步骤:(1)预处理。首尾端的静音切除,降低对后续步骤造成的干扰,然后进行声音分帧,把...
Automaticspeechrecognition(ASR)tasksareresolvedbyend-to-enddeeplearningmodels,whichbenefitsusbylesspreparationofrawdata,andeasiertransformationbetweenlanguages.Weproposeanovelend-to-enddeeplearningmodelarchitecturenamelycascadedCNN-resBiLSTM-CTC.Intheproposedmodel,weaddresidualblocksinBiLSTMlayerstoextractsophisticated…
Inthispaper,phoneticfeaturesderivedfromthejointacousticmodel(JAM)ofamultilingualendtoendautomaticspeechrecognitionsystemareproposedforIndianlanguageidentification(LID).ThesefeaturesutilizecontextualinformationlearnedbytheJAMthroughlongshort-termmemory-connectionisttemporalclassification(LSTM-CTC)framework.Hence,thesefeaturesarereferredtoas...
论文《End-to-endSequenceLabelingviaBi-directionalLSTM-CNNs-CRF》的代码实现CNN卷积神经网络实现语音识别.zip目的:使用CNN卷积神经网络实现语音识别步骤:(1)预处理。首尾端的静音切除,降低对后续步骤造成的干扰,然后进行声音分帧,把...