首页

医学论文

首页 医学论文 问题

医学论文中p值的意义

发布时间:

医学论文中p值的意义

t检验中的P表示:无效假设成立与否的概率大小;P值大于设定的检验水准α水准,则无效假设成立的概率就大。

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

t检验是比较两个群体总体平均值的差异,p值越大说明这两个群体总体均值相同的概率越大,即两个群体是来自相同的总体;反正,越小则说明他们来自不同的群体。

p值统计学意义是:

结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标,P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。

如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

选择一个检验统计量(例如z 统计量或Z 统计量),该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值;如果,说明结果更倾向于接受假定的参数取值。

医学论文p值的意义

t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z)。

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

p值统计学意义:结果真实程度(能够代表总体)的一种估计方法。

P值(P value)就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。

然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。

p值统计学意义是:

结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标,P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。

如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

选择一个检验统计量(例如z 统计量或Z 统计量),该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值;如果,说明结果更倾向于接受假定的参数取值。

医学论文p值的意义是什么

在统计学中,P值(P value,全称Probability Value)是指在进行假设检验时,根据样本数据计算出来的一个概率值。具体来说,P值表示的是,如果总体假设为真,那么从总体中随机抽取与当前样本相同或更极端的样本,得到这些样本的概率值。

通常情况下,P值越小,表示当前样本的数据与总体假设不符的可能性就越大。在假设检验中,通常将P值与显著性水平进行比较,如果P值小于显著性水平,就拒绝原假设,否则则接受原假设。

例如,如果假设一个硬币是公平的,掷10次硬币,得到5次正面朝上,5次反面朝上。进行假设检验时,计算出来的P值为,如果显著性水平为,那么P值大于显著性水平,就无法拒绝原假设,即不能排除硬币是公平的这个可能性。

p就是显著性=sigF的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。

P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。

P<时,认为差异有统计学意义”或者“显著性水平α=”,指的是如果本研究统计推断得到的差异有统计学意义,那么该结果是“假阳性”的概率小于。

扩展资料:

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。

若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α > P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下不拒绝原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

eviews中的关于相关度研究自变量对因变量的影响显著与否主要看P(Prob)值,一般而言P<即可,当然有的研究p<也是可以接受的。X1的P值为,X3的P值为,说明这两个变量对因变量影响显著

医学论文p值的意义有哪些

p值统计学意义是:

结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标,P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。

如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

选择一个检验统计量(例如z 统计量或Z 统计量),该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值;如果,说明结果更倾向于接受假定的参数取值。

用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。

如果p值很小,说明在原假设下极端观测结果的发生概率很小。而如果出现了,根据小概率原理,就有理由拒绝原假设;p值越小,拒绝原假设的理由越充分。

p值是基于数据的检验统计量算出来的概率值。如果p值是5%,也就是说,如果以此为界拒绝原假设的话,那么只有5%的可能性犯错。原假设是对的,但却拒绝了,这是错误的。所以说p值越大,拒绝原假设的理由越不充分。如果p值接近于0,拒绝原假设,那么几乎不可能犯错,于是说明数据是极其不符合原假设。

换言之,是假设检验中零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。通常在连续分布的假设下,p值是一个服从[0,1]区间均匀分布的随机变量,在实际使用中因样本等各种因素存在不确定性。

近100年来,统计学家使用p值来描述数据的统计显著性,这种方法造成了许多人在工作中把统计显著性的阈值(事先给定值)强行假定为大于等于实际显著性(实际数据计算出的p值),于是强行拒绝原假设,做出了很多不科学的决策。p值产生的结果可能会带来争议。

2018年,由72位科学家组成的小组在《自然·人类行为》上发表了一篇名为《重新定义统计意义》的评论文章,赞同将统计显著性的阈值从调整到。这样就使得科研人员不能强行让如此小的统计显著性阈值大于实际数据计算出来的p值。

在科学研究的许多领域,p值小于被认为是确定实验数据可靠性的金标准。这个标准支持了大多数已发表的科学结论,违反这一标准的论文很难发表,而且也很难得到学术机构的资助。

然而,即使是费雪也明白,统计显著性的概念以及支撑它的p值具有相当大的局限性。几十年来,科学家也逐渐意识到了这些局限性。

历史

p值的计算可以追溯到18世纪,当时计算的是人类出生性别比,并与男女出生概率相同的零假设相比的统计学差异。约翰·阿布斯诺特于1710年研究了这一问题,并检查了伦敦从1629年到1710年的82年中每一年的出生记录。

阿布斯诺特观察到每一年在伦敦出生的男婴数都超过了女婴数。考虑到零假设是男性或女性出生概率相同,这一观察结果出现的概率是1/282,或约为4,836,000,000,000,000,000分之1;这个计算得到的值,用现代术语说,就是P值。

这个数字小得惊人,使阿布斯诺特认为这一结果的出现不是由于几率,而是由于神的旨意。“由此可见,支配一切的是艺术,而不是几率”。用现代术语来说,他在p=1/282的显著性水平上拒绝了男女出生可能性相同的零假设。

1925年,英国遗传学家兼统计学家罗纳德·爱尔默·费希尔出版了《研究者的统计方法》(Statistical Methods for Research Workers)一书。

这本书的书名在当时看起来并不会“畅销”,但实际上这本书却取得了巨大的成功,而且还使费雪成为现代统计学之父。在这本书中,他着眼于研究人员如何将统计检验理论应用于实际数据,以便基于数据得出他们所发现的结论。

当使用某个统计假设来做检验时,该检验能够概述数据与其假设的模型之间的兼容性,并生成一个p值。 费雪建议,作为一个方便的指南,研究人员可以考虑将p值设为。对于这一点,他专门论述道:“在判断某个偏差是否应该被认为是显著的时候,将这一阈值作为判断标准是很方便的。”

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

医学论文p值多少有意义

p值统计学意义是什么?

p值,也称显著性值或者Sig.值,用于描述某件事情发生的概率情况,其取值范围是0~1,不包括0和1,通常情况下,一般有三个判断标准一个是、以及。在绝大多数情况下,如果p值小于,则说明至少有99%的把握,如果p值小于(且大于或等于),则说明至少有95%的把握,如果p值小于(且大于或等于),则说明至少有90%的把握。

在统计语言表达上,如果p值小于,则称作水平显著,例如,研究人员分析X对Y是否存在影响关系时,如果X对应的p值为(由于小数位精度要求,展示为),则说明X对Y存在影响关系这件事至少有99%的把握,统计语言描述为X在水平上呈现显著性。

如果P值小于(且大于或等于),则称作在水平上显著。例如,研究人员在研究不同性别人群的购买意愿是否有明显的差异时,如果对应的P值为,则说明在水平上呈现出显著性差异,即说明不同性别人群的购买意愿有着明显的差异,而且对此类差异至少有95%的把握。绝大多数研究希望P值小于,即说明研究对象之间有影响、有关系或有差异等。但个别地方需要P值大于,如方差齐性检验时需要P值大于(此处P值大于说明方差不相等)。

假设检验,我们可以把这个词分为“假设”和“检验”来看。

“假设”这个词带了不确定性,常说假设一个事情发生了就怎么样,就是这个事情可能发生,也可能不发生,所以我们从概率这里说起。

生活中很多事件发生看似是随机的、偶然的,比如你打麻将扔骰子,扔到1就是1,扔到6就是6,但实际上这个事件是服从一定概率分布的——均匀分布,扔到1~6这六个数的概率是一样的,都是六分之一。

均匀分布的特点就是事件的各种情况发生的概率是相等的。这种分布是很简单的。然后现在来说另外一种很常见很重要应用很广泛的分布——正态分布。

正态分布是一种随机变量是具有钟形概率分布的随机变量,许多变量的概率分布都服从正态分布。例如:某地区儿童的发育特征,身高。体重等。在同一条件下,产品的质量以平均质量为中心上下摆动,特别差或者特别好的都是少数,多数处于中间状态,正态分布是最重要的一种连续型分布,有着非常广泛的应用。

显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=或α=。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。

SPSSAU操作计算:

如果手工计算,需要计算出F值,最后查表,然后判断是否有显著性差异,最后得到结论,使用SPSSAU直接将分析项拖拽到分析框内(过程简单,这里不展示),最后得到F值为,p值为大于,说明不同学历对产品满意度没有显著性差异。

p就是显著性=sigF的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

统计学意义(p值)zt结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,的p值通常被认为是可接受错误的边界水平。在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果≥p>被认为是具有统计学意义,而≥p≥被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。

相关百科

热门百科

首页
发表服务