首页

医学论文

首页 医学论文 问题

医学论文统计F值

发布时间:

医学论文统计F值

F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。

P值表示不拒绝原假设的程度。简而言之,P<表示假设更可能是正确的,反之则可能是错误的。

r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和。

P值是衡量控制组与实验组差异大小的指标,意思是P值小于.05,表示两组存在显著差异,意思是P值小于.01,表示两组的差异极其显著,可以用SPSS统计,根据自变量应该是果蝇的性别,因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。

另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。

扩展资料:

F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。

F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为,该检验的稳健型还是相当可靠的。

参考资料来源:百度百科-F检验

F检验又叫方差齐性检验。在两样本t检验中要用到F检验。从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。其中要判断两总体方差是否相等,就可以用F检验。简单的说就是 检验两个样本的 方差是否有显著性差异 这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 S^2,以确定他们的精密度是否有显著性差异。至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t检验。

关于统计学中的f值,在统计学中有专业而且权威的论述。在这,就我的理解,简单的说:f值用来检验样本的结果能够代表总体的真实程度。也就是常说的求样本p值,当p值的结果为≥p>被认为是具有统计学意义,或结果为≥p≥被认为具有高度统计学意义。 这样简单的回答,不知您是否满意!

F值时F检验的统计量值,F=MSR/MSE,其中MSR=SSR/自由度,MSE=SST/自由度,一般大于给定阿尔法相对的F量时说明显著。

P值是指(F检验或者T或者其余检验量)大于所求值时的概率,一般要小于于给定α就说明检验显著,p=P(|U|>=|u|)=|uα/2|)=α。

r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好,R平方=SSR/SST,其中SSR是回归平方和,SST是总离差平方和。

统计学专业能力:

1,具有扎实的数学基础,受到比较严格的科学思维训练。

2,掌握统计学的基本理论、基本知识、基本方法和计算机操作技能;具有采集数据、设计调查问卷和处理调查数据的基本能力。

3,了解与社会经济统计、医药卫生统计、生物统计或工业统计等有关的自然科学、社会科学、工程技术的基本知识,具有应用统计学理论分析、解决该领域实际问题的初步能力。

4,了解统计学理论与方法的发展动态及其应用前景。

5,对于理学学士,应能熟练使用各种统计软件包,有较强的统计计算能力;对于经济学学士,应具有扎实的经济学基础,具有利用信息资料进行综合分析和管理的能力。

6,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的科学研究和实际工作能力。

医学论文中p值和f值

1、t值是t检验的统计量值,t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、F值是F检验的统计量值。F检验是一种在零假设(nullhypothesis,H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P值,一般以P<为有统计学差异,P<为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于、、。扩展资料:F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。参考资料:百度百科——假设检验中的P值百度百科——F检验百度百科——t检验

F值是检验计量模型的总体显著水平。

原理:显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的几率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。

经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。

显著性检验的基本思想可以用小概率原理来解释:

1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。

2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。

以上内容参考:百度百科-显著性检验

F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。

P值表示不拒绝原假设的程度。简而言之,P<表示假设更可能是正确的,反之则可能是错误的。

r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和。

P值是衡量控制组与实验组差异大小的指标,意思是P值小于.05,表示两组存在显著差异,意思是P值小于.01,表示两组的差异极其显著,可以用SPSS统计,根据自变量应该是果蝇的性别,因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。

另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。

扩展资料:

F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。

F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为,该检验的稳健型还是相当可靠的。

参考资料来源:百度百科-F检验

医学论文中的f值t值和p值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

我们常常在统计学应用中看到P值,F值,T值,这些参数是什么?我想应该先讲讲“假设检验”,弄明白假设检验,很多问题就通了。

本文首先介绍了假设检验在统计学的位置,然后从 显著性检验 、 P值的疑问 、 假设检验方法的使用 三个角度描述假设检验。

统计学按照发展阶段和侧重点不同,可分为描述统计学和推断统计学 [1]

描述统计学 是阐述如何对客观现象的数量表现进行计量表示; 推断统计学 主要阐述如何根据部分数据(样本统计量)去推论总体的数量特征及规律性的一系列理论和方法

假设检验(hypothesis testing)作为推断统计学的重要部分,用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

常用的假设检验方法有Z检验、T检验、卡方检验、F检验等 [2]

显著性检验(significance test)是假设检验的一种最常用的方法,用于检测实验组与对照组是否有差异以及差异是否显著的办法。

因为显著性检验<假设检验<推断统计学,所以显著性检验具有以下特点:

小概率事件实际不可能性原理是显著性检验的基本原理,如果P小于阈值 ,表明事件是小概率事件,存在发生的可能性但可能性不大甚至不可能发生,所以认为 大概率不会发生,拒绝原假设。

显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了所愿意承担的风险。 通常取α=或α=。这表明,当作出决策时,其正确的可能性为95%或99%,有或α=下错结论的风险。

置信度也称为可靠度,或置信水平、置信系数 置信度 = 1-α

什么是显著性差异?

H0和H1的设置,不管在什么场景要满足:

赌场上你想检查一下抛掷的硬币是否被动过手脚,要求抛几次硬币看结果是不是公平的。 总共扔了十次,也都是“花”朝上,认为很可能这枚硬币不是公平的。

这就是假设检验: 你提出假设:说硬币是正常的 (H0:硬币是正常的;H1:硬币不正常) 我提出要检验你的假设:扔十次,看实验的结果是不是和你的假设相符

反复扔硬币应该符合二项分布

总共扔10次硬币,那么是出现7次正面之后,可以认为“硬币是不公平的”,还是在出现9次正面以后认为“硬币是不公平”,这是一个主观标准,看你能够承担的风险有多大,也就是显著性水平 。

例如取 为, ,则认为原假设是小概率事件,拒绝原假设,认为硬币不正常,存在显著性差异(和正常硬币的抛掷分布情况很不一样)。 由于取 为,所以这个决策有95%的准确性。

P值是指在特定的统计假设模型下,数据的某个统计指标(如两组样本均数之差)等于观察值或比观察值更为极端的概率。

上文显著性检验就是比较P值和 之间的关系做出决策,但对P值的争议很大,因此需要单独讲一讲P值。

目前科学界对P值的使用存在很大的置疑,认为P值是是扰人烦的蚊子,是皇帝的新衣,比“毫无用处”还糟糕 [6] 。

林泽民教授2016/6/6在台湾政大社科院的演讲,题目为《看电影学统计:p值的陷阱》提到统计学很快会有很重大的改变,传统的作法:用P值来作统计检定的作法,大概再过几年就不容易再存在。

2018年1月22日,美国政治学顶级学术期刊《政治分析》在他们的官方twitter上宣布从2018年的开始的第26辑起禁用p值。根据该刊的声明,其主要原因是:“p值本身无法提供支持相关模式或假说之证据。”

在临床试验中P值的使用尤为普遍,用来检验药物的有效性,P值问题使得近半数的相关论文可靠性被推翻。

为什么说P值是个陷阱?为什么P值本身无法支持相关模式或假说之证据?

主要原因是因为:P值只能对样本数据负责,但模型的意义在于推断总体,所以总有以偏概全的风险存在。同时,因为P值易受样本操控,而很多研究为了得到想要的结论,往往是不断调整样本量,直到得到想要的结果 [8] 。

P值本身是没有问题的,但如果单纯只依赖P值是否小于 做出决策却也是不可取的,学术界反对的是P值的滥用。

美国统计协会(American Statistical Association,ASA)全面透彻地梳理了统计界关于P值的统计意义并形成共识 [7] :

而常用统计推断检验方法分为两大类:参数检验和非参数检验

根据总体数据是否服从某种分布,采用参数检验和非参数检验两种检验方法,具体使用哪种检验方法根据属性和要求决定。

某公司运营团队为了针对活跃度提升专题运营活动的效果进行测试,从同样群体中抽出两组人群,一组运营组,一组对照组。30天后运营活动结束后,想要知道该次针对性运营是否有效,两组活跃度分数是否差异明显?

T检验是数据化运营效果分析中应用最多的方法和技术。使用要求为:1)样本组之间独立;2)每组样本来自正态分布总体;3)两个独立样本方差相等。

虽然两组都是独立的,但两组样本的总体不一定是正态分布的,方差也不一定相等,我们可以采用非参数检验—wilcoxon符号秩检验。

wilcoxon符号秩检验适用于两个独立样本间的两两比较。

如果不能确定总体是否为正态分布,则只能退而求其次用非参数检验的方法。如果满足T检验要求,有限考虑T检验的结果。

[1] 推断统计学: [2] 假设检验: [3] 显著性水平: [4] 显著性差异: [5] 统计学假设检验中 p 值的含义具体是什么? [6] 统计学里“P”的故事:蚊子、皇帝的新衣和不育的风流才子: [7] 临床试验中P值的意义及结果: [8] P值的陷阱: [9] 非参数检验:

医学论文统计P值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P>,说明两者间没有统计学差异;如果P<,说明两者间有统计学差异.

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

P就是犯第一类错误的概率,即原假设为真,被拒绝的概率,一般控制其小于因为在医学中,我们宁可犯第一类错误,即原假设为真,被拒绝的概率,也不能容忍接收一个错误的假设

医学论文中的f值

P值是衡量控制组与实验组差异大小的指标,*意思是P值小于.05,表示两组存在显著差异,**意思是P值小于.01,表示两组的差异极其显著,这个可以用SPSS统计,根据你的描述自变量应该是果蝇的性别(雌还是雄),因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。。。另外,在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。

F值时F检验的统计量值,F=MSR/MSE,其中MSR=SSR/自由度,MSE=SST/自由度,一般大于给定阿尔法相对的F量时说明显著。P值是指(F检验或者T或者其余检验量)大于所求值时的概率,一般要小于于给定α就说明检验显著。p=P(|U|>=|u|)<=P(|U|>=|uα/2|)=αr值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和

首先R太小F值是整个回归模型的显著性T是各个自变量的显著性你这里没有给出各个自变量的,你可以把里面的回归不好的自变量剔除掉再回归试试另外SIG太大了,你这模型是无效的

F值时F检验的统计量值,F=MSR/MSE,其中MSR=SSR/自由度,MSE=SST/自由度,一般大于给定阿尔法相对的F量时说明显著。

P值是指(F检验或者T或者其余检验量)大于所求值时的概率,一般要小于于给定α就说明检验显著,p=P(|U|>=|u|)=|uα/2|)=α。

r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好,R平方=SSR/SST,其中SSR是回归平方和,SST是总离差平方和。

统计学专业能力:

1,具有扎实的数学基础,受到比较严格的科学思维训练。

2,掌握统计学的基本理论、基本知识、基本方法和计算机操作技能;具有采集数据、设计调查问卷和处理调查数据的基本能力。

3,了解与社会经济统计、医药卫生统计、生物统计或工业统计等有关的自然科学、社会科学、工程技术的基本知识,具有应用统计学理论分析、解决该领域实际问题的初步能力。

4,了解统计学理论与方法的发展动态及其应用前景。

5,对于理学学士,应能熟练使用各种统计软件包,有较强的统计计算能力;对于经济学学士,应具有扎实的经济学基础,具有利用信息资料进行综合分析和管理的能力。

6,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的科学研究和实际工作能力。

相关百科

热门百科

首页
发表服务