秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
常用的医学科研统计方法有:计量资料的统计方法可分为参数检验法和非参数检验法。参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的;方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性
医学统计方法概述 第一节 医学统计学 在临床医学中的作用和意义 一、医学统计学 1、统计学 统计学(statistics)是研究数据搜集、整理与分析的科学,是认识社会和自然现象数量特征的重要工具。 2、医学统计学 统计学在医学研究领域的应用称为医学统计学。 医学统计学与生物统计学、卫生统计学是统计学原理和方法在互有联系的不同学科领域的应用,三者间有少许区别,但无截然界限。 二、医学统计学在临床医学中的应用及意义 1、临床科研设计 2、对搜集资料的内在规律进行分析 3、为医务工作者阅读科技文献和撰写科研论文提供工具 第二节 统计工作的基本步骤 统计工作的基本步骤通常分为四步:(研究)设计、搜集资料、整理资料和分析资料。 一.研究设计(design) 设计一般包括专业设计和统计设计。专业设计即确定调查题目、内容等。统计设计包括资料收集、整理与分析。 统计设计包括资料收集、整理与分析全过程的统计设想和科学安排。 设计需考虑以下几方面: 1、研究的目的和假设是什么? 2、研究对象的选择范围是什么?如何确定? 3、研究方法是什么?技术路线如何? 4、具体的研究内容、观察项目与指标是什么? 5、研究对象的数量大小,如何抽样?怎样分组? 6、对观察指标如何进一步计算?具体采用哪些统计分析方法? 7、有哪些可能存在的误差?如何避免与减少其影响? 8、时间、人员、经费方面的安排。 实验三要素:处理因素、受试对象、实验效应 设计四原则:对照、随机化、重复、盲法 二、搜集资料(data collection) 按照设计要求,原则是及时、准确、完整地收集原始数据。 1、病历 2、日常医疗工作记录 3、临床检查与化验记录 4、疾病监测报表 5、专题研究 三、整理资料(data sorting) 1、资料的录入和清理 资料录入前后初步的清理是核实,其次是发现异
统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!
浅谈统计分析与决策
[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。
[关键词] 统计分析 分析方法 决策
统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?
狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。
广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。
搞好统计分析,需要解决选题、分析、撰写报告三个问题。
一、统计分析选题
所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。
怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。
统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。
统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。
二、统计分析方法
统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。
统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。
统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。
形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。
对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。
所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,
没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。
从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。
三、统计分析报告的撰写
统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。
准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。
快:就是在决策层决策之前,不失时机地及时提供分析报告。
新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。
深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。
活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。
统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。
1.准确地表述事实
每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。
2.透彻地阐明本质
现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。
阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。
3.深刻地揭示规律
规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。
4.恰当地提出建议
认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。
以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。
统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。
试谈统计分析方法应用
【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。
【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言
随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。
二、多元统计分析方法的主要应用
统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。
聚类分析
它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。
判别分析
判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。
主成分分析
主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。
因子分析
因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。
三、构建多元统计分析方法检验体系的必要性
(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量
多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。
(二)多元统计分析统计检验体系的基础理论
多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。
(三)关于统计检验体系
将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:
a.主成分分析统计检验体系
b.因子分析统计检验体裂引
c.系统聚类分析统计检验体系
d.判别分析统计检验体裂
e.对应分析统计检验体系
f.典型相关分析统计检验体系
四、多元统计分析方法应用中需要注意的几个共性问题
1.关于原始数据变量的总体分布问题。
对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。
样本容量问题。
进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。
原始变量之间的相关性以及非线性关系问题。
多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。
数据处理问题。
多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。
五、结束语
在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。
【参考文献】
[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.
[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.
[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.
[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。
秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?
常用的医学科研统计方法有:计量资料的统计方法可分为参数检验法和非参数检验法。参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的;方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性
医学统计方法概述 第一节 医学统计学 在临床医学中的作用和意义 一、医学统计学 1、统计学 统计学(statistics)是研究数据搜集、整理与分析的科学,是认识社会和自然现象数量特征的重要工具。 2、医学统计学 统计学在医学研究领域的应用称为医学统计学。 医学统计学与生物统计学、卫生统计学是统计学原理和方法在互有联系的不同学科领域的应用,三者间有少许区别,但无截然界限。 二、医学统计学在临床医学中的应用及意义 1、临床科研设计 2、对搜集资料的内在规律进行分析 3、为医务工作者阅读科技文献和撰写科研论文提供工具 第二节 统计工作的基本步骤 统计工作的基本步骤通常分为四步:(研究)设计、搜集资料、整理资料和分析资料。 一.研究设计(design) 设计一般包括专业设计和统计设计。专业设计即确定调查题目、内容等。统计设计包括资料收集、整理与分析。 统计设计包括资料收集、整理与分析全过程的统计设想和科学安排。 设计需考虑以下几方面: 1、研究的目的和假设是什么? 2、研究对象的选择范围是什么?如何确定? 3、研究方法是什么?技术路线如何? 4、具体的研究内容、观察项目与指标是什么? 5、研究对象的数量大小,如何抽样?怎样分组? 6、对观察指标如何进一步计算?具体采用哪些统计分析方法? 7、有哪些可能存在的误差?如何避免与减少其影响? 8、时间、人员、经费方面的安排。 实验三要素:处理因素、受试对象、实验效应 设计四原则:对照、随机化、重复、盲法 二、搜集资料(data collection) 按照设计要求,原则是及时、准确、完整地收集原始数据。 1、病历 2、日常医疗工作记录 3、临床检查与化验记录 4、疾病监测报表 5、专题研究 三、整理资料(data sorting) 1、资料的录入和清理 资料录入前后初步的清理是核实,其次是发现异
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义
去知网找,那里肯定有你要的论文,自己可以先搜搜看,不知道怎样找的话,可以去我百度空间里,有如何在网络上找论文的文章介绍
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义
我也没做过,关注一下,希望可以找到答案!
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
医学论文统计学方法应用的错误解析论文
摘 要: 统计学方法应用正确与否直接关系到医学科研结果的可信度和有效性,在研究设计时的错误应用会否决整个科研研究方案,基于错误统计学方法上产生的结果会浪费科研人员的时间和精力。编审人员应该高度重视医学论文的统计学方法应用,提高单篇文献的质量和学术水平。
关键词: 统计学方法;医学论文;解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<;,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的'研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
[4] 张春军,董凯.网络信息时代加强医学期刊编辑的信息素养[J].牡丹江医学院学报,2011(32).