绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。
一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。
医学SCI论文的正确写作步骤一、 收集整理资料 资料要真实,资料的获取一定是作者亲自调查或进行实验所取得的第一手材料。而绝非虚构、伪造或“想当然”。论文中所有数据都要忠实于事实材料,必须经过反复验证,要有据可查,不能主观臆断、弄虚作假。所有数据都必须选择恰当的统计方法进行统计处理。计数资料用绝对数,率,百分比,OR值,标准误,可信限等,统计用条图,圆图,线图,分析用χ2检验;等级数据可用秩和,Ridit分析,统计用条图,圆图,分析用秩和检验,Ridit分析;计量数据用均数,中位数,标准差,标准误,百分位数,参考值,统计用直方图,分析用t检验,方差分析,相关与回归分析等;反应时间用年复发率,年生存率,中位生存时间等,统计用生存率曲线,生存率阶梯图,危险率图等,分析用专门的统计方法,即生存分析(survival analysis)。 二、 编写提纲 编写提纲是把医学论文结构、构思固定下来,它是完善构思,使构思条理化,周密化的一种有效的方法,当然你也可以打好腹稿。编写提纲的好处是你能确定你研究成果总的轮廓、逻辑顺序,可以让你清晰明了你所研究课题,不会造成论文混乱,甚或重复。文章结构应该清晰明了,对于大的主题,应该按各期刊要求加以划分小标题来层层说明。如果没有小标题,读者读起来很吃力,显的杂乱无章,这样的文章读者是不喜欢的。 三、 撰写成稿 初稿应一气呵成,而不要不时的回头去看前面写的是否满意。初学写论文的读者很容易不停的去往上看,是否字写错了,段落是否连贯等等。记住,这只是初稿,以后还要修改的,不时的回头看,会影响自己的思路。初稿完成后,仔细的从头读到尾。看有没有错别字,语法是否有问题。论文写好后还应反复修改,将可有可无的字、句,不必要的数据,甚至图表删除。注意有无文字与表或图的内容重复。最重要的就是是否说清楚了你研究的问题,拿起你写下的主题,看看是否跑题了。对于段落,要注意段落的构成是否单一,完整,段与段之间的衔接是否连贯,紧凑;对于句子,每个句子是否正确的表达了文章内容;对于用词看是否贴切,是否符合习惯用语;修改文章一定要看看文章是否合乎逻辑,合乎多数读者参考:查尔斯沃思论文润色贴士
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
p应该代表表达率,
P< 表示 表达率低于这个数值
国内主要有5大期刊数据库
一、中国知网提供的《中国学术期刊(光盘版)》
也称中国期刊全文数据库由清华同方股份有限公司出版。
收录1994年以来国内6 600种期刊,包括了学术期刊于非学术期刊,涵盖理工、农业、医药卫生、文史哲、政治军事与法律、教育与社会科学综合、电子技术与信息科学、经济与管理。
收录的学术期刊同时作为“中国学术期刊综合评价数据库统计源期刊”。
但是收录的期刊不很全面,一些重要期刊未能收录。
二、中国生物医学文献数据库(CBMDISC)
由数据库是中国医学科学院信息研究所开发研制,收录了自1978年以来1 600余种中国生物医学期刊。
范围涉及基础医学、临床医学、预防医学、药学、中医学及中药学等生物医学的各个领域。
三、中文生物医学期刊数据库(CMCC)
由中国人民 *** 医学图书馆数据库研究部研制开发。
收录了1994年以来国内正式出版发行的生物医学期刊和一些自办发行的生物医学刊物1 000余种的文献题录和文摘。
涉及的主要学科领域有:基础医学、临床医学、预防医学、药学、医学生物学、中医学、中药学、医院管理及医学信息等生物医学的各个领域。
并具有成果查新功能医学全在线
四、万方数据资源系统(China Info)
由中国科技信息研究所,万方数据股份有限公司研制。
该数据库收录的期刊学科范围广,包括了学术期刊于非学术期刊,提供约2 000种的电子期刊的全文检索。
被收录的学术期刊都获得了“中国核心期刊(遴选)数据库来源期刊”的收录证书。
个别期刊甚至将“遴选”改成“精选”,或者干脆去掉。
很多作者因此误以为这就是核心期刊。
五、维普数据库
也称中文科技期刊数据库,维普科技期刊数据库,由中国科学技术信息研究所重庆分所出版。
收录了1989年以来我国自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学和图书情报等学科9 000余种期刊,包括了学术与非学术期刊。
收录期刊数量很大,但不足之处是部分国家新闻出版总署公布的非法期刊也被收录了。
一般的,学术期刊都能进入至少1个国内期刊数据库。
期刊据数据库[3]不是期刊的评价体系,对科研处的期刊性质评价也就缺乏足够的意义,故不宜作为期刊性质评价的依据。
1、万方数据
万方数据提供中国大陆科技期刊检索,是万方数据股份有限公司建立的专业学术知识服务网站。
隶属于万方数据资源系统,对外服务数据由万方数据资源系统统一部署提供。
2、全国报刊索引
收录全国包括港台地区的期刊8000种左右,月报道量在万条以上,年报道量在44万条左右,书本式用户有3500多家,现又出版光盘数据库。
反映了中国政治、经济、军事、科学、文化、文学艺术、历史地理、科技等方面的发展情况,提供了国内外最新学术进展信息。
该索引是我国收录报刊种类最多,内容涉及范围最广,持续出版时间最长,与新文献保持同步发展的权威性检索刊物,也是查找建国以来报刊论文资料最重要的检索工具。
正文采用分类编排,先后采用过《中国人民大学图书分类法》和自编的《报刊资料分类表》,1980年起,仿《中国图书馆图书分类法》分21类编排,1992年全面改用《中国图书资料分类法》(第三版)编排,2000年开始用《中国图书馆分类法》(第四版)标引,计算机编排。
在著录上,《全国报刊索引》从1991年起采用国家标准——《检索期刊条目著录规则》进行著录,包括题名、著译者姓名、报刊名、版本、卷期标识、起止页码、附注等项。
同时,“哲社版”采用电脑编排,增加了“著者索引”、“题中人名分析索引”、“引用报刊一览表”,方便了读者的使用。
3、超星数字图书馆
为目前世界最大的中文在线数字图书馆,提供大量的电子图书资源提供阅读,其中包括文学、经济、计算机等五十余大类,数十万册电子图书,300 万篇论文,全文总量 4亿余页,数据总量30000GB,大量免费电子图书,并且每天仍在不断的增加与更新。
覆盖范围:涉及哲学、宗教、社科总论、经典理论、民族学、经济学、自然科学总论、计算机等各个学科门类。
本馆已订购67万余册。
收录年限:1977年至今。
4、维普资讯
维普资讯是科学技术部西南信息中心下属的一家大型的专业化数据公司,是中文期刊数据库建设事业的奠基人,公司全称重庆维普资讯有限公司。
目前已经成为中国最大的综合文献数据库。
从1989年开始,一直致力于对海量的报刊数据进行科学严谨的研究、分析,采集、加工等深层次开发和推广应用。
5、中宏数据库
中宏数据库由国家发改委所属的中国宏观经济学会、中宏基金、中国宏观经济信息网、中宏经济研究中心联合研创。
是由18类大库、74类中库组成,涵盖了九十年代以来宏观经济、区域经济、产业经济、金融保险、投资消费、世界经济、政策法规、统计数字、研究报告等方面的详尽内容,是目前国内门类最全,分类最细,容量最大的经济类数据库。
1、中国知网:知网是目前我国最大也是最权威的一个论文发表网站,学生写论文的时候都要从中国知网上查找文献,并且在论文写完后也需要从上面进行查重。足以见出这个网站对于论文的重要性。所以能将论文发表在知网上,也侧面说明你这篇文章的质量还是非常不错的。
2、维普数据网:这也是一个比较巨大的期刊数据库,这个网站也比较权威,所以也是发表论文的一个好选择。
3、硕博论文网:硕博论文网涵盖了各种专业的论文,很多学生在写论文的时候 也需要去上面查找文献。在本网站发表医学论文还是十分不错的。
二、怎样分辨发表网站的质量——三个方面
1.专业程度:很多网站,页面乱七八糟,很多弹窗,一上来就问你老多问题,而你问他的时候,他却磨磨唧唧,总是回答不了你的问题,而且回答的也不在点子上,感觉沟通起来很累。沟通效率低,不专业,给他们文章看,他们也说不出个所以然,这样的,多钱也不能找他们,因为你不知道他们后把你的文章弄成什么样,到后期再沟通会很麻烦。
2.夸大其词:有的论文网站感觉就像是淘宝上的卖家,热情的让你受不了,问到出刊时间,论文质量,就说保证怎么样,肯定怎么样,一定怎么样,反正话说的很大,感觉很厉害的样子,这样的多半是不靠谱的,想先忽悠住你,到时付了钱,再有变动就是他们说了算了。
3.假刊陈列:有的论文发表网站,看上去很厉害的样子,页面弄的好像比门户网站都好,这时要看看他们的期刊列表就行了。有的电子版期刊或者连万方数据库或者知网都不上的刊物,他们还在那陈列着,还给你推荐电子版期刊或推荐给你只上龙源的期刊,这样肯定不靠谱啊。
医学的我能写。按研究的学科,可将学术论文分为自然科学论文和社会科学论文。每类又可按各自的门类分下去。如社会科学论文,又可细分为文学、历史、哲学、教育、政治等学科论文。按研究的内容,可将学术论文分为理论研究论文和应用研究论文。理论研究,重在对各学科的基本概念和基本原理的研究;应用研究,侧重于如何将各学科的知识转化为专业技术和生产技术,直接服务于社会。
写医学类的论文去哪找资料很好找的 例如知网之类的实在不行看看海天论文发表!
做科研必备6大文献数据库!
*关于数据库介绍可以点击第一行《做科研必备6大文献数据库!》查看
只有四大数据库吧知网、万方、维普、龙源
一般来说鲜明的要求写人的论文都已经给出题目,大部分是命题或者半命题,当然也存在让你拟题的可能。题目是文章的窗口,拟一个好题目,可以使文章增色不少,怎样拟好写人论文的题目呢?1、通常我们以写的人为题,这样可以一目了然让人了解你是在写人,在题目中,也可以加入一些修饰语,把这个人的主要特征写入,如《可爱的老爸》;或者把我对一个人的情感写入《难忘的他》
医学文献常用数据库:Pubmed我常用很多跟遗传病有关的数据库,有:OMIM(人类孟德尔遗传数据库)、HGMD(人类基因突变数据库)、Clinvar(NCBI临床突变数据库)、gnomAD(人群频率数据库)、dbSNP(人群频率数据库)、InterVar(位点致病性评判)、GeneReviews(疾病数据库)、PharmGKB(药物基因组数据库)、常用预测软件数据库。跟CNV分析有关的数据:DGV(基因组变异数据库)、Decipher(拷贝数变异数据库)、ClinGen数据库(剂量敏感判断数据库)、UCSC Genome Browser(基因组浏览器)。表型库:HPO(人类本体表型库)、CHPO上面是我常用的数据库,不知是不是您问的内容,当然查文献最多还是在pubmed。
只有四大数据库吧知网、万方、维普、龙源
国内主要有5大期刊数据库一、中国知网提供的《中国学术期刊(光盘版)》也称中国期刊全文数据库由清华同方股份有限公司出版。收录1994年以来国内6 600种期刊,包括了学术期刊于非学术期刊,涵盖理工、农业、医药卫生、文史哲、政治军事与法律、教育与社会科学综合、电子技术与信息科学、经济与管理。收录的学术期刊同时作为“中国学术期刊综合评价数据库统计源期刊”。但是收录的期刊不很全面,一些重要期刊未能收录。二、中国生物医学文献数据库(CBMDISC)由数据库是中国医学科学院信息研究所开发研制,收录了自1978年以来1 600余种中国生物医学期刊。范围涉及基础医学、临床医学、预防医学、药学、中医学及中药学等生物医学的各个领域。三、中文生物医学期刊数据库(CMCC)由中国人民解放军医学图书馆数据库研究部研制开发。收录了1994年以来国内正式出版发行的生物医学期刊和一些自办发行的生物医学刊物1 000余种的文献题录和文摘。涉及的主要学科领域有:基础医学、临床医学、预防医学、药学、医学生物学、中医学、中药学、医院管理及医学信息等生物医学的各个领域。并具有成果查新功能医学全在线四、万方数据资源系统(China Info)由中国科技信息研究所,万方数据股份有限公司研制。该数据库收录的期刊学科范围广,包括了学术期刊于非学术期刊,提供约2 000种的电子期刊的全文检索。被收录的学术期刊都获得了“中国核心期刊(遴选)数据库来源期刊”的收录证书。个别期刊甚至将“遴选”改成“精选”,或者干脆去掉。很多作者因此误以为这就是核心期刊。五、维普数据库也称中文科技期刊数据库,维普科技期刊数据库,由中国科学技术信息研究所重庆分所出版。收录了1989年以来我国自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学和图书情报等学科9 000余种期刊,包括了学术与非学术期刊。收录期刊数量很大,但不足之处是部分国家新闻出版总署公布的非法期刊也被收录了。一般的,学术期刊都能进入至少1个国内期刊数据库。期刊据数据库[3]不是期刊的评价体系,对科研处的期刊性质评价也就缺乏足够的意义,故不宜作为期刊性质评价的依据。1、万方数据万方数据提供中国大陆科技期刊检索,是万方数据股份有限公司建立的专业学术知识服务网站。隶属于万方数据资源系统,对外服务数据由万方数据资源系统统一部署提供。2、全国报刊索引收录全国包括港台地区的期刊8000种左右,月报道量在万条以上,年报道量在44万条左右,书本式用户有3500多家,现又出版光盘数据库。反映了中国政治、经济、军事、科学、文化、文学艺术、历史地理、科技等方面的发展情况,提供了国内外最新学术进展信息。该索引是我国收录报刊种类最多,内容涉及范围最广,持续出版时间最长,与新文献保持同步发展的权威性检索刊物,也是查找建国以来报刊论文资料最重要的检索工具。正文采用分类编排,先后采用过《中国人民大学图书分类法》和自编的《报刊资料分类表》,1980年起,仿《中国图书馆图书分类法》分21类编排,1992年全面改用《中国图书资料分类法》(第三版)编排,2000年开始用《中国图书馆分类法》(第四版)标引,计算机编排。在著录上,《全国报刊索引》从1991年起采用国家标准——《检索期刊条目著录规则》进行著录,包括题名、著译者姓名、报刊名、版本、卷期标识、起止页码、附注等项。同时,“哲社版”采用电脑编排,增加了“著者索引”、“题中人名分析索引”、“引用报刊一览表”,方便了读者的使用。3、超星数字图书馆为目前世界最大的中文在线数字图书馆,提供大量的电子图书资源提供阅读,其中包括文学、经济、计算机等五十余大类,数十万册电子图书,300 万篇论文,全文总量 4亿余页,数据总量30000GB,大量免费电子图书,并且每天仍在不断的增加与更新。覆盖范围:涉及哲学、宗教、社科总论、经典理论、民族学、经济学、自然科学总论、计算机等各个学科门类。本馆已订购67万余册。 收录年限:1977年至今。4、维普资讯维普资讯是科学技术部西南信息中心下属的一家大型的专业化数据公司,是中文期刊数据库建设事业的奠基人,公司全称重庆维普资讯有限公司。目前已经成为中国最大的综合文献数据库。从1989年开始,一直致力于对海量的报刊数据进行科学严谨的研究、分析,采集、加工等深层次开发和推广应用。5、中宏数据库中宏数据库由国家发改委所属的中国宏观经济学会、中宏基金、中国宏观经济信息网、中宏经济研究中心联合研创。是由18类大库、74类中库组成,涵盖了九十年代以来宏观经济、区域经济、产业经济、金融保险、投资消费、世界经济、政策法规、统计数字、研究报告等方面的详尽内容,是目前国内门类最全,分类最细,容量最大的经济类数据库。
国内五大论文数据库如下:
一、中国知网提供的《中国学术期刊(光盘版)》
也称中国期刊全文数据库由清华同方股份有限公司出版。
收录1994年以来国内6 600种期刊,包括了学术期刊于非学术期刊,涵盖理工、农业、医药卫生、文史哲、政治军事与法律、教育与社会科学综合、电子技术与信息科学、经济与管理。
收录的学术期刊同时作为“中国学术期刊综合评价数据库统计源期刊”。
但是收录的期刊不很全面,一些重要期刊未能收录。
二、中国生物医学文献数据库(CBMDISC)
数据库是中国医学科学院信息研究所开发研制,收录了自1978年以来1 600余种中国生物医学期刊。
范围涉及基础医学、临床医学、预防医学、药学、中医学及中药学等生物医学的各个领域。
三、中文生物医学期刊数据库(CMCC)
由中国人民解放军医学图书馆数据库研究部研制开发。
收录了1994年以来国内正式出版发行的生物医学期刊和一些自办发行的生物医学刊物1 000余种的文献题录和文摘。
涉及的主要学科领域有:基础医学、临床医学、预防医学、药学、医学生物学、中医学、中药学、医院管理及医学信息等生物医学的各个领域。
并具有成果查新功能医学全在线
四、万方数据资源系统(China Info)
由中国科技信息研究所,万方数据股份有限公司研制。
该数据库收录的期刊学科范围广,包括了学术期刊于非学术期刊,提供约2 000种的电子期刊的全文检索。
被收录的学术期刊都获得了“中国核心期刊(遴选)数据库来源期刊”的收录证书。
个别期刊甚至将“遴选”改成“精选”,或者干脆去掉。
很多作者因此误以为这就是核心期刊。
五、维普数据库
也称中文科技期刊数据库,维普科技期刊数据库,由中国科学技术信息研究所重庆分所出版。
收录了1989年以来我国自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学和图书情报等学科9 000余种期刊,包括了学术与非学术期刊。
收录期刊数量很大,但不足之处是部分国家新闻出版总署公布的非法期刊也被收录了。
一般的,学术期刊都能进入至少1个国内期刊数据库。
期刊据数据库不是期刊的评价体系,对科研处的期刊性质评价也就缺乏足够的意义,故不宜作为期刊性质评价的依据。
另外还有:
1、万方数据
万方数据提供中国大陆科技期刊检索,是万方数据股份有限公司建立的专业学术知识服务网站。
隶属于万方数据资源系统,对外服务数据由万方数据资源系统统一部署提供。
2、全国报刊索引
收录全国包括港台地区的期刊8000种左右,月报道量在万条以上,年报道量在44万条左右,书本式用户有3500多家,现又出版光盘数据库。
反映了中国政治、经济、军事、科学、文化、文学艺术、历史地理、科技等方面的发展情况,提供了国内外最新学术进展信息。
该索引是我国收录报刊种类最多,内容涉及范围最广,持续出版时间最长,与新文献保持同步发展的权威性检索刊物,也是查找建国以来报刊论文资料最重要的检索工具。
正文采用分类编排,先后采用过《中国人民大学图书分类法》和自编的《报刊资料分类表》,1980年起,仿《中国图书馆图书分类法》分21类编排,1992年全面改用《中国图书资料分类法》(第三版)编排,2000年开始用《中国图书馆分类法》(第四版)标引,计算机编排。
在著录上,《全国报刊索引》从1991年起采用国家标准——《检索期刊条目著录规则》进行著录,包括题名、著译者姓名、报刊名、版本、卷期标识、起止页码、附注等项。
同时,“哲社版”采用电脑编排,增加了“著者索引”、“题中人名分析索引”、“引用报刊一览表”,方便了读者的使用。
3、超星数字图书馆
为目前世界最大的中文在线数字图书馆,提供大量的电子图书资源提供阅读,其中包括文学、经济、计算机等五十余大类,数十万册电子图书,300万篇论文,全文总量4亿余页,数据总量30000GB,大量免费电子图书,并且每天仍在不断的增加与更新。
覆盖范围:涉及哲学、宗教、社科总论、经典理论、民族学、经济学、自然科学总论、计算机等各个学科门类。
本馆已订购67万余册。
收录年限:1977年至今。
4、维普资讯
维普资讯是科学技术部西南信息中心下属的一家大型的专业化数据公司,是中文期刊数据库建设事业的奠基人,公司全称重庆维普资讯有限公司。
目前已经成为中国最大的综合文献数据库。
从1989年开始,一直致力于对海量的报刊数据进行科学严谨的研究、分析,采集、加工等深层次开发和推广应用。
5、中宏数据库
中宏数据库由国家发改委所属的中国宏观经济学会、中宏基金、中国宏观经济信息网、中宏经济研究中心联合研创。
是由18类大库、74类中库组成,涵盖了九十年代以来宏观经济、区域经济、产业经济、金融保险、投资消费、世界经济、政策法规、统计数字、研究报告等方面的详尽内容,是目前国内门类最全,分类最细,容量最大的经济类数据库。
发展现状
在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来,几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,
即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,
这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同,
它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。而传统的关系型数据库在一些传统领域依然保持了强大的生命力。
以上内容参考:百度百科——数据库
做科研必备6大文献数据库!
*关于数据库介绍可以点击第一行《做科研必备6大文献数据库!》查看