首页

医学论文

首页 医学论文 问题

医学论文中的统计错误

发布时间:

医学论文中的统计错误

论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。署名(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。结论(七)论文——结语或结论论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。参考文献(八)论文——参考义献这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。

一类错误是原假设Ho为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概率用β表示,所以也称β错误或取伪错误.

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

第一类错误,又叫拒真错误,即本来原假设是正确的,而根据样本得出的统计量的值落入了拒绝域,根据检验拒绝了正确的原假设。第二类错误,又叫受伪错误,即本来原假设是错误的,而根据样本得出的统计量的值落入了接受域,不能拒绝原假设,接受了(确切地说是不拒绝)原本错误的原假设。

医学论文中统计错误

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

医学期刊中的统计错误

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

1、首先检查数据是否存在异常值或者缺失值。如果有,需要进行数据清洗和填充。2、其次重新计算均值。在计算均值时,可以采用不同的方法,如算术平均数、加权平均数等,以确保结果的准确性。3、然后进行统计分析。通过统计分析方法,如方差分析、回归分析等,对数据进行进一步分析,以确定计算错误的原因,并采取相应的措施进行纠正。4、最后向期刊编辑部提交更正申请。如果错误的数据已经发表在期刊上,您可以向期刊编辑部提交更正申请,并提供正确的数据和分析结果。

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

统计错误的医学论文

[1]黄玮俊 李彩霞 拉布 周雁 黎培兴 胡彬 普布卓玛 格桑卓嘎 方积乾 王一鸣.藏族人群15号染色体中心粒区域基因的高精度连锁不平衡和单体型图谱及其与汉族人群的比较[J].科学通报,2006,51(3):283~[2]王蓓 高海莲 刘雪琴 郝元涛 冯桂兰 方积乾.WHO生存质量量表老年模块在我国前列腺增生症患者中的适用性研究[J].中华护理杂志,2006,41(8):687~[3]凌莉 刘军 韩璐 唐广心 方积乾.广州市农村流动人口卫生服务需求与利用分析[J].华南预防医学,2006,32(2):1~[4]王心旺 方积乾.广东省居民健康、伤残、死亡三者间的量效关系研究[J].中国老年学杂志,2006,26(4):445~[5]郝元涛 方积乾 宋心远 朱淑明 吴少敏.非线性因子分析模型参数估计研究[J].中国卫生统计,2006,23(2):108~[6]王心旺 方积乾.基于混合正态模型的糖尿病住院病人医疗保险设计[J].中国卫生统计,2006,23(2):118~[7]李彩霞 黎培兴 方积乾.传递不平衡的对称性检验的适用性[J].中国卫生统计,2006,23(1):16~[8]颜杰 相丽驰 方积乾.灰色预测模型及SAS实现[J].中国卫生统计,2006,23(1):75~[9]何春 方积乾.极大似然估计和拟极大似然估计模拟之比较[J].广东工业大学学报,2006,23(1):114~[10]郝元涛 方积乾 Power MJ 吴少敏 朱淑明.WHO生存质量评估简表的等价性评价[J].中国心理卫生杂志,2006,20(2):71~[11]刘清海 方积乾.医学期刊统计学误用现状、趋势与对策[J].中国科技期刊研究,2006,17(4):549~[12]赵利 刘凤斌 梁国辉 陈金泉 方积乾.中华生存质量量表的信度和效度[J].中国临床康复,2006,10(8):1~[13]王心旺 方积乾.基于分类风险模型的最优奖惩系统设计及在特定疾病保险中的应用[J].中国自然医学杂志,2006,8(3):185~[14]麦劲壮 李河 方积乾 刘小清 饶栩栩.Meta分析中失安全系数的估计[J].循证医学,2006,6(5):297~[15]李彩霞 黎培兴 方积乾.家系数据紧密连锁位点的单体型频率估计[J].中山大学学报:自然科学版,2005,44(3):9~[16]凌莉 刘军 韩璐 唐广心 方积乾.广州市流动人口的卫生服务需求与利用[J].中华预防医学杂志,2005,39(6):395~[17]王心旺 杨哲 方积乾.广东省卫生行业科学研究与试验发展投入产出效益分析[J].广州医学院学报,2005,33(1):9~[18]万崇华 方积乾 汤学良 张灿珍 卢玉波 孟琼 高丽.SF-36量表用于肝癌患者生活质量测定的效果评价[J].肿瘤,2005,25(5):492~[19]李彩霞 黎培兴 关永源 方积乾.离子通道的混合密度参数估计与状态判别[J].数理统计与管理,2005,24(6):62~[20]颜杰 党容 方积乾.配对设计两组多分类频数分布的比较方法[J].中国卫生统计,2005,22(5):306~[21]颜杰 谢薇 方积乾.SPSS中随机抽样的精确实现[J].中国卫生统计,2005,22(4):255~[22]匡莉 方积乾 徐淑一.医院规模经济与成本函数研究进展[J].国外医学:卫生经济分册,2005,22(3):111~[23]金华 方积乾.多维协变量具有测量误差的结构回归模型[J].生物数学学报,2005,20(1):77~[24]刘清海 方积乾.医学论文统计学报告指南的综述与思考[J].中国科技期刊研究,2005,16(4):448~[25]黄玮俊 李彩霞 陈素琴 孙健冬 周雁 方积乾 王一鸣.中国汉族人群15号染色体中心粒区域5个基因的高精度单倍型及单倍型域构建[J].科学通报,2004,49(7):649~[26]李彩霞 黎培兴 关永源 方积乾.单离子通道潜在信号的马氏距离判别[J].中山大学学报:自然科学版,2004,43(3):111~[27]王心旺 刘淑霞 方积乾.健康期望寿命的综合评价[J].广州医学院学报,2004,32(4):29~[28]王心旺 杨哲 方积乾.糖尿病保险费精算模型研究[J].广州医学院学报,2004,32(3):7~[29]王心旺 杨哲 方积乾.广东省居民6种疾病负担研究[J].广州医学院学报,2004,32(2):21~[30]杜勇 李幼姬 李彩霞 郭辉 JosephCKLeung ManFLam 杨念生 黄锋先 方积乾 PatrickHMaxweⅡ 黎嘉能 王一鸣.Uteroglobin基因G38A多态性与IgA肾病相关关系[J].中山大学学报:医学科学版,2004,25(3):200~[31]赵利 陈金泉 梁国辉 刘凤斌 方积乾.因子分析法在生存质量测定量表研制中的应用[J].中国中西医结合杂志,2004,24(11):965~[32]郝元涛 孙希凤 方积乾 吴少敏 朱淑明.量表条目筛选的统计学方法研究[J].中国卫生统计,2004,21(4):209~[33]何春 方积乾.多维平均处理效应极大似然估计的模拟研究[J].广东工业大学学报,2004,21(4):97~[34]颜杰 李彩霞 曾芳芳 方积乾.如何控制SAS结果的输出[J].中国卫生统计,2004,21(2):119~[35]张晋昕 方积乾 凌莉 陈雄飞 党容.基于预报效果的ARIMA模型筛选[J].中国卫生统计,2004,21(1):6~[36]颜杰 李彩霞 方积乾 丁守銮.完全随机设计两组t检验与秩和检验的功效比较[J].中国卫生统计,2004,21(1):10~[37]刘颜 李一明 伍友春 方积乾.深圳市居民对社区卫生服务需求及相关因素研究[J].中国初级卫生保健,2004,18(10):41~[38]孙希凤 郝元涛 方积乾.老年人生存质量量表条目的初步筛选[J].中国心理卫生杂志,2004,18(7):455~[39]李彩霞 黎培兴 关永源 方积乾.单离子通道潜在信号的阈值[J].数理医药学杂志,2004,17(4):294~[40]刘凤斌 方积乾 王建华.中医药临床疗效评价的探讨[J].中药新药与临床药理,2004,15(4):290~[41]刘颜 李一明 伍友春 方积乾.深圳市居民对社区卫生服务的认识程度及影响因素研究[J].中国行为医学科学,2004,13(5):576~[42]赵利 刘凤斌 梁国辉 方积乾 林丽珠 陈金泉.中华生存质量量表的理论结构模型研制探讨[J].中国临床康复,2004,8(16):3132~[43]金华 何春 方积乾.可交换条件下的结构回归模型[J].中山大学学报:自然科学版,2003,42(3):4~[44]黎培兴 李彩霞 方积乾 关永源.单离子通道的隐马氏模型与状态的还原[J].中山大学学报:自然科学版,2003,42(2):9~[45]方积乾 宇传华.第十三讲 如何处理随访资料[J].中华预防医学杂志,2003,37(1):63~[46]王心旺 杨哲 刘淑霞 方积乾.广东省居民健康期望寿命研究[J].中山大学学报:医学科学版,2003,24(3):F002~[47]王心旺 方积乾.健康-疾病负担测量与医疗保险精算方法研究[J].中山大学学报论丛,2003,23(6):1~[48]凌莉 方积乾.三级医院病人就诊流向探讨[J].中国医院管理,2003,23(3):11~[49]孙希凤 方积乾.老年人生存质量的影响因素[J].中华老年医学杂志,2003,22(8):508~[50]陈雄飞 董晓梅 汪宁 方积乾.多因子共线性的主成分logistic回归分析[J].中国卫生统计,2003,20(4):212~[51]郝元涛 方积乾.证实性因子分析在量表等价性评价中的应用研究[J].中国卫生统计,2003,20(3):130~[52]张晋昕 方积乾 赵晓华 陈雄飞 凌莉.医学时间序列谱分析中的日历因素及修正方法[J].中华医院管理杂志,2003,19(11):690~[53]倪涛洋 黎黎 刘颜 方积乾 关永源.时间序列数据记忆性的判别方法[J].生物数学学报,2003,18(4):502~[54]何春 方积乾.可交换条件下多维结构回归模型总体平均处理效应的估计[J].生物数学学报,2003,18(3):321~[55]许宗利 方淯靖 方积乾.多元性状同胞对连锁分析方法及其在原发性高血压基因定位数据中的应用[J].生物数学学报,2003,18(2):176~[56]许宗利 方积乾.一般家系二分类性状的贝叶斯连锁分析方法[J].生物数学学报,2003,18(1):15~[57]郝元涛 方积乾.生存质量测定量表等价性评价研究[J].中国行为医学科学,2003,12(3):338~[58]郝元涛 方积乾.结构方程模型及其在医学中的应用研究[J].中国医院统计,2003,10(4):240~[59]方积乾 王显红.骨密度测量的统计质量控制[J].中国骨质疏松杂志,2003,9(3):273~[60]许宗利 方积乾.适宜于连锁分析文献的Meta分析方法[J].中华预防医学杂志,2002,36(3):196~[61]刘凤斌 方积乾.医学教育与生存质量[J].现代预防医学,2002,29(2):206~[62]周旭毓 方积乾.Gibbs岳样在HBV、HCV感染与肝癌关系的病例—对照研究meta分析中的应用[J].中山医科大学学报,2002,23(3):165~[63]凌莉 方积乾.调整资源结构后医院的成本效益评价[J].中国卫生统计,2002,19(4):214~[64]周旭毓 方积乾.Meta分析中随机效应模型的Gibbs抽样及其应用[J].中国卫生统计,2002,19(4):204~[65]方积乾 周凤琼 等.试论医院服务质量的评价与保障[J].中华医院管理杂志,2002,18(10):630~[66]凌莉 方积乾.卫生资源供给结构调整的方法学研究[J].中华医院管理杂志,2002,18(6):351~[67]郑迎东 方积乾.含有重度缺失的多维时间序列补缺方法及其在环境监测中的应用[J].中国公共卫生,2002,18(1):118~[68]凌莉 方积乾.世界卫生资源配置模式探讨[J].卫生软科学,2002,16(2):34~[69]方积乾 柳青.我国恶性肿瘤筛查的问题与对策[J].中国肿瘤,2002,11(1):10~[70]凌莉 方积乾.病人就诊流向及医疗费用的变化[J].中国医院统计,2002,9(4):219~[71]宇传华 方积乾.骨质疏松症临床试验设计的统计学要点及相关问题[J].中国骨质疏松杂志,2002,8(2):183~[72]周旭毓 方积乾.Meta分析的常见偏倚[J].循证医学,2002,2(4):216~[73]方积乾.肿瘤筛查之我见[J].抗癌,2002,(2):32~[74]高桂明 方积乾 等.肿瘤发病人数估计的分层捕获—再捕获方法[J].中华流行病学杂志,2001,22(3):223~[75]金华 方积乾.因果推断中的混杂控制[J].生物数学学报,2001,16(3):362~[76]郑迎东 方积乾.空气污染与健康时间序列资料的传递函数模型的识别和建立[J].数理医药学杂志,2001,14(4):292~[77]方积乾 郝元涛.生存质量研究的设计与实施[J].中国肿瘤,2001,10(2):69~[78]郝元涛 方积乾.生存质量研究资料的统计分析[J].中国肿瘤,2001,10(2):72~[79]凌莉 方积乾.肿瘤发病和死亡资料的时间趋势分析[J].中国肿瘤,2001,10(1):24~[80]凌莉 方积乾 等.骨密度检测质量控制研究[J].中国骨质疏松杂志,2001,7(3):281~[81]许宗利 方积乾.连锁分析研究的Meta分析方法[J].生命科学研究,2001,5(4):308~[82]杨哲 方积乾.广东省卫生人力供需现状评价[J].中国卫生统计,2000,17(4):224~[83]万崇华 方积乾.纵向资料分析的衍生变量法及其在生命质量资料分析中的应用[J].中华医院管理杂志,2000,16(4):255~[84]秦学军 方积乾.随机漂移亚群体等位基因频率分布的假定及在DNA指纹数据中?…[J].生物数学学报,2000,15(2):227~[85]金华 方积乾.空气污染对小学生肺功能水平的个体效应估计[J].数理医药学杂志,2000,13(4):330~[86]万崇华 方积乾 等.FLIC量表用于肝癌患者生命质量测定的对比研究[J].中国行为医学科学,2000,9(5):321~[87]万崇华 方积乾.WHOQOL—100量表用于药物成瘾者生命质量测定的对比研究[J].中国行为医学科学,2000,9(4):241~[88]方积乾 万崇华.生存质量研究概况与测定量表[J].现代康复,2000,4(8):1123~[89]郝元涛 方积乾.世界卫生组织生存质量测定量表中文版介绍及其使用说明[J].现代康复,2000,4(8):1127~[90]凌莉 方积乾 刘颜 柳青 汤泽群 傅承主 杨哲 张寿生.卫生资源配置的区域分类标志值测算方法[J].中国卫生资源,2000,3(2):85~[91]杨哲 张寿生 汤泽群 傅承主 方积乾 柳青 凌莉 刘颜.广东省卫生人力供需现状评价[J].中国卫生资源,2000,3(1):13~[92]万崇华 方积乾.生存质量作为时变协变量的Cox回归分析及应用[J].中华预防医学杂志,1999,33(3):143~[93]洪明晃 方积乾.试论肿瘤“早诊方法”的流行病学与临床意义[J].中华肿瘤杂志,1999,21(1):73~[94]方积乾 张敏瑞.医学论文中常见统计错误及其纠正[J].中山医科大学学报,1999,20(4):314~[95]万崇华 方积乾.纵向生命质量资料分析的Markov过程法及其应用[J].中华流行病学杂志,1999,20(3):162~[96]赵会仁 方积乾.细胞膜K离子通道的动力学模型的参数估计[J].锦州医学院学报,1999,20(1):27~[97]方积乾 刘向明.离子通道门控动力学研究[J].中山医科大学学报,1999,20(1):9~[98]万崇华 方积乾.纵向资料的裂区设计方差分析法及其在吸毒者生命质量评价中的应用[J].数理统计与管理,1999,18(1):1~[99]林爱华 方积乾.两地孕产妇产前检查方案的成本效果比较[J].中国卫生统计,1999,16(3):157~[100]方积乾 郝元涛.世界卫生组织生活质量量表中文版的信度与效度[J].中国心理卫生杂志,1999,13(4):203~[101]刘颜 方积乾.农村初级卫生保健的信息管理[J].医学信息(云南),1999,12(8):30~[102]孙晓武 方积乾.测量误差非线性职业暴露效应模型参数估计的MCMC方法[J].数理医药学杂志,1999,12(2):110~[103]林爱华 方积乾.两地孕产妇产前检查方案的成本效果比较[J].中国医院统计,1999,6(3):148~[104]杨哲 方积乾.广东省医院床位供需现状评价[J].中国卫生事业管理,1999,(12):638~[105]洪明晃 方积乾.肿瘤的分层分析和分层治疗[J].中华肿瘤杂志,1998,20(5):373~[106]洪明晃 方积乾.应用无复发生存率和无远处转移生存率进行肿瘤预后的评价:附411例鼻咽癌…[J].癌症,1998,17(2):118~[107]秦学军 方积乾.随机漂移亚群体的两种模拟结果的比较[J].生物数学学报,1998,13(3):354~[108]刘向明 方积乾.PC12细胞钾离子通道门控动力学随机建模与参数估计(Ⅰ)[J].生物数学学报,1998,13(3):372~[109]秦学军 方积乾.亚群体DNA指纹结构的模拟及参数估计[J].数理医药学杂志,1998,11(3):229~[110]万崇华 方积乾.MOS SF—36量表用于药物成瘾者生命质量测定的对比研究[J].中国行为医学科学,1998,7(4):260~[111]万崇华 方积乾.肝癌患者生存质量测定量表的制定与考评[J].中国行为医学科学,1998,7(3):170~[112]万崇华 方积乾.同一时点生命质量资料分析的TOPSIS法[J].中国医院统计,1998,5(3):134~[113]洪明晃 方积乾.无复发生存率和无转移生存率在肿瘤研究中的作用[J].中华肿瘤杂志,1997,19(3):239~[114]方积乾 柳青.医学研究生统计课程综合改革探讨[J].中国卫生统计,1997,14(6):55~[115]柳青 方积乾.鼻咽癌疾病自然史的随机模型研究[J].中国卫生统计,1997,14(4):12~[116]史明丽 方积乾.模糊综合评价法在社区人群生存质量评价中的应用[J].中国卫生统计,1997,14(4):28~[117]万崇华 方积乾.药物成瘾者生存质量测定量表的制定及其考评[J].中国行为医学科学,1997,6(3):169~[118]方积乾 刘向明 刘士光 胡性本.离子通道门控动力学的随机建模[J].自然杂志,1997,(2):86~[119]傅承主 方积乾.鼻咽癌筛查资料中无发病数据的分析方法探讨[J].中国卫生统计,1996,13(6):32~[120]方积乾 廖瑞端.成对相依资料的回归方法[J].中国卫生统计,1996,13(4):1~[121]刘向明 方积乾.离子通道开放状态检测法的计算机模拟研究(Ⅰ)[J].生物数学学报,1996,11(2):60~[122]方积乾 陈和年.医学研究中logistic回归模型的正确应用(二)[J].中国卫生统计,1993,10(5):61~[123]方积乾 陈和年.医学研究中logistic回归模型的正确应用(一)[J].中国卫生统计,1993,10(4):54~

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

我可以把知道的告诉你,像我就是从事医学论文发表的

《河北省脑瘫患儿生存质量状况调查与经济负担评价_崔巍》文中 表计算错误。统计表核算“合计”结果是错的。按照表里的数据,计算一下就知道了。

医学论文中的统计学错误

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

“社会统计学与数理统计学的理论统一”的重大意义统计学家王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量,而变量和随机变量是两个既有区别又统计学家王见定教授著有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现,我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基础和促进了它们的蓬勃发展。可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相应的转化的意义称为巨大、也就不视为过。下面我们回到“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。它结束了近400年来几十种甚至上百种以上五花八门种类的统计学的混战局面,使它们回到正确的轨道上来。由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通常研究复杂问题研究转化为若干简单问题的研究的道理是一样的。既然社会统计学描述的是变量,而变量描述的范围是极其宽广的,绝非某些数理统计学者所云:社会统计学只作简单的加、减、乘、除。从理论上讲,社会统计学应该复盖除了数理统计学之外的绝大多数数学学科的运作。所以统计学家王见定教授提出的“社会统计学与数理统计学统一”理论,从根本上纠正了统计学界长期存在的低估社会统计学的错误学说,并从理论上和应用上论证了社会统计学的广阔前景。[2] [6][5]

计学,可以说无处不在,我们每个人的日常生活都会受到统计学的影响。但是很多人,即使受过统计学的正规训练,也会在不知不觉之间犯一些常见的分析错误。下面这篇文章,我就和大家分享一些现实生活中比较常见的统计研究错误。1. 参照组(Control group)那天我恰好在网上看到一篇文章,叫做《眼保健操对于保护眼睛有作用么?》。作者的观点是眼保健操没有什么作用,列举的证据是眼保健操在中国的学校里推行了50多年,小学生和中学生的近视率大大上升了,而非下降。因此作者得出结论:眼保健操对视力有害。乍一看,好像确实是这么回事:50多年前我们开始在学校里要求学生们做眼保健操。但是现在孩子们的近视率,则要比当时的那些孩子的近视率高出很多。但是如果就因为这个而得出眼保健操没用的结论,则是谬之大矣。主要原因在于:没有参照组。和建国初那时候的孩子们相比,现在的孩子由于功课压力,在室内花的时间(读书,做作业,上补习班等)大幅度增长,用眼的“诱惑”也大大增加,比如电视,电脑,手机等等。因此无论是否做眼保健操,现在孩子的视力肯定都不及当时的孩子。这也不是中国独有的现象,日本,韩国,新加坡等国的情况也类似。而这些国家都没有眼保健操。如果要真正研究眼保健操对于保护视力是否有效,那么就应该通过参照组来对比。研究人员应该找到两组情况类似的样本(比如同一个学校里的孩子)进行研究。这两组样本的区别除了他们是否做眼保健操以外,在其他方面越相似越好。然后通过一定时间的跟踪调查,研究人员才可能得出更加客观和可靠的研究结果。1747年,苏格兰医生James Lind在一艘名叫Salisbury的船上成功的找到了治疗坏血病的方法:就是通过吃橙子和柠檬补充维他命C。而他找到该疗法的关键就是运用了参照组实验方法。坏血病是一种非常可怕的疾病。坏血病的发病特征包括皮下出血(因此腿会变黑),极度疲劳,牙床腐烂,肌肉变软。长期出海的船员和海盗是坏血病的多发人群。James Lind使用的参照组实验是这样进行的。在Salisbury这艘船上,Lind医生找到了12个坏血病严重程度差不多的病人,将他们两人一组分成6组。对于这6组病人,Lind医生给予了他们6种不同的治疗方法,包括橙子,柠檬,苹果酒,醋和盐水等。后来Lind医生发现,食用橙子和柠檬的那组病人的恢复速度显然比其他组别要快很多,因此得出结论橙子和柠檬可以治疗坏血病。现在我们知道,橙子中的维他命C才是坏血病的克星。Lind医生通过参照组实验获得的这项重要发现,帮助挽救了成千上万的水手的生命。如果没有参照组这个重要的分析方法,Lind医生能否找到正确的解药要打一个大问号。当时,Lind医生一度怀疑坏血病的病因和啤酒有关。Lind医生观察到,每次船上的啤酒被喝光时,往往也伴之以坏血病的大面积流行。但事实上,啤酒喝光,和坏血病盛行,只是一个巧合而已。因为坏血病往往多发于长期航海旅途中,而在海上旅行久了,啤酒自然也会被喝完。如果不通过参照组方法去分析真正的原因,那么就可能得出啤酒能够治疗坏血病这样错误的结论。在我们阅读分析一些统计研究报告时,一个很重要的地方就是要看该研究有没有参照组进行对比。如果研究只是比较了几个变量之间的关系而缺乏参照组进行对照,那么该研究的结论就值得怀疑。2. 随机取样(Random Sampling)下面来讲讲“随机取样(Random Sampling)”这个问题。在现实中,我们经常面对的问题是,需要研究的样本量太大,无法收集到完整的数据。比如我们想要了解全国十几亿人的想法,或者想要知道所有沿海城市的中产阶级的消费偏好,等等。要想精确的回答这些问题,我们就需要随机抽取一些代表性样本,通过样本的表现来推测整体的特征。如何确保收集到的样本真正“随机”,是一个技术含量很高的问题。在这方面有很多失败的例子可供我们学习。1936年,美国的总统选举大战在罗斯福(FDR)和兰登(Alf Landon)之间展开。在选举投票前,当时一家非常大的调查机构Literary Digest发出了1千万张明信片来收集美国人的投票倾向。在这1千万张明信片中,Literary Digest收到了2百万份回复。在这些回复中,绝大部分人都倾向于选兰登。因此Literary Digest得出结论:兰登将赢得总统选举。当时还有另外一家新成立不久的调查公司,名叫Gallup。Gallup没有Literary Digest那么大的预算。他们只是有针对性的选了几千个受访者做了民意调查,并得出罗斯福将会赢得总统大选的结论。

相关百科

热门百科

首页
发表服务