现在我给个方案你,里面是4个球队的,不过你照模式改成5个球队的就可以了啊。为方便起见,现将这四个队伍分别命名为A、B、C、D。下面我们分两大类情况讨论 一、 所有比赛都不出现平局1. 请看以下三幅双向连通图:(1) (2) (3)这三幅双向连通图显然表示以下排名及得分的情况为:(1)A:9 D:6 B:3 D:0 这种情况下,显然不存在并列的队伍;(2)(A B C):6 D:0 这种情况下,A B C并列第一,D第二名;(3)D:9 (A B C):3 这种情况下,D第一名,A B C并列第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边这幅双向连通图:如右图所示,此图中各队伍的得分为: A:6 B:3 C:3 D:6此时按照 (A D)(B C)的排名方式或者是按照 A D B C 的排名方式是否就算是公平的排名方式呢? (4)下面我们来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为: 对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0303;0030;3000;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(4)所示的比赛排名结果为:A D C B 二、 比赛中出现平局的情况1. 请看以下三幅双向连通图:这三幅双向连通图显然表示以下排名及得分的情况为:(5)A:7 D:5 B:2 D:1 这种情况下,显然不存在并列的队伍;(6)D:9 (A B C):2 这种情况下,D第一名,A B C并列第二名;(7)(A B C):2 D:0 这种情况下,A B C并列第一,D第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边的双向连通图:如右图所示,此图中各队伍的得分为: A:5 B:2 C:2 D:6此时按照 (D A)(B C)的排名方式或者是按照 D A B C 的排名方式是否就算是公平的排名方式呢?同样的我们通过建立数学模型来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为:对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0113;1010;1100;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(8)所示的比赛排名结果为:D A C B
自己动手丰衣足食啊!!
这个题还是自己好好东莞东脑筋吧……别想不劳而获……
请邮箱查收。
现在我给个方案你,里面是4个球队的,不过你照模式改成5个球队的就可以了啊。为方便起见,现将这四个队伍分别命名为A、B、C、D。下面我们分两大类情况讨论 一、 所有比赛都不出现平局1. 请看以下三幅双向连通图:(1) (2) (3)这三幅双向连通图显然表示以下排名及得分的情况为:(1)A:9 D:6 B:3 D:0 这种情况下,显然不存在并列的队伍;(2)(A B C):6 D:0 这种情况下,A B C并列第一,D第二名;(3)D:9 (A B C):3 这种情况下,D第一名,A B C并列第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边这幅双向连通图:如右图所示,此图中各队伍的得分为: A:6 B:3 C:3 D:6此时按照 (A D)(B C)的排名方式或者是按照 A D B C 的排名方式是否就算是公平的排名方式呢? (4)下面我们来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为: 对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0303;0030;3000;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(4)所示的比赛排名结果为:A D C B 二、 比赛中出现平局的情况1. 请看以下三幅双向连通图:这三幅双向连通图显然表示以下排名及得分的情况为:(5)A:7 D:5 B:2 D:1 这种情况下,显然不存在并列的队伍;(6)D:9 (A B C):2 这种情况下,D第一名,A B C并列第二名;(7)(A B C):2 D:0 这种情况下,A B C并列第一,D第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边的双向连通图:如右图所示,此图中各队伍的得分为: A:5 B:2 C:2 D:6此时按照 (D A)(B C)的排名方式或者是按照 D A B C 的排名方式是否就算是公平的排名方式呢?同样的我们通过建立数学模型来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为:对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0113;1010;1100;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(8)所示的比赛排名结果为:D A C B
还有,见到有些地方层次分析法界和着topsis也用了,用来检验的,具体就看不懂了....有什么联系吗?是不是都可以这么用啊???用层次分析法嵌套熵值法,再用topsis检验就没了...
A题:2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题 制动器试验台的控制方法分析汽车的行车制动器(以下简称制动器)联接在车轮上,它的作用是在行驶时使车辆减速或者停止。制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。为了检验设计的优劣,必须进行相应的测试。在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量(忽略车轮自身转动具有的能量)等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。例如,假设有4个飞轮,其单个惯量分别是:10、20、40、80 kg·m2,基础惯量为10 kg·m2,则可以组成10,20,30,…,160 kg·m2的16种数值的机械惯量。但对于等效的转动惯量为 kg·m2的情况,就不能精确地用机械惯量模拟试验。这个问题的一种解决方法是:把机械惯量设定为40 kg·m2,然后在制动过程中,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。一般假设试验台采用的电动机的驱动电流与其产生的扭矩成正比(本题中比例系数取为 A/N·m);且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。现在要求你们解答以下问题:1. 设车辆单个前轮的滚动半径为 m,制动时承受的载荷为6230 N,求等效的转动惯量。2. 飞轮组由3个外直径1 m、内直径 m的环形钢制飞轮组成,厚度分别为 m、 m、 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为 [-30, 30] kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿多大的惯量?3. 建立电动机驱动电流依赖于可观测量的数学模型。在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动秒后车速为零,计算驱动电流。4. 对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。请对该方法执行的结果进行评价。5. 按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。6. 第5问给出的控制方法是否有不足之处?如果有,请重新设计一个尽量完善的计算机控制方法,并作评价。用某种控制方法试验得到的数据 已知条件 扭矩() 转速(rpm) 时间(s) 初转速(rpm) 末转速(rpm) 等效的转动惯量() 机械惯量() 40 0 514 257 48 35 40 40 45 50 55 75 105 110 115 120 150 230 245 245 265 270 280 275 280 280 1 275 280 285 451 285 285 275 280 285 285 285 280 275 280 275 275 285 275 280 285 275 280 280 275 280 2 285 275 270 275 285 285 275 285 285 275 275 280 285 285 275 275 285 275 280 290 285 275 275 280 285 285 285 3 270 275 280 285 285 280 275 285 290 285 275 280 280 280 275 285 285 285 285 285 285 285 285 280 275 275 275 4 285 290 285 275 285 290 285 285 275 280 273 285 290 285 275 285 285
EXPLORATION OF DISTRIBUTING THE SUPPLIES HELP THE DISASTER AREA《灾区救援物资分配问题探讨》APPLICATION OF PRIORITY SERVICE OF QUEUE SYSTEM IN OPHTHALMOLOGY SICKBED ARRANGEMENT《优先服务权的排队系统在眼科病床安排中的应用》ERROR ESTIMATION OF INVERSE PERTURBATION OF CLOSED LINEAR OPERATOR DRAZIN . 《闭线性算子Drazin逆的扰动误差估计》EVALUATION SYSTEM OF STUDENTS’LEARNING STATUS BASED ON COMPREHENSIVE SCORE.《基于综合成绩的学生学习状况评价体系》
现在我给个方案你,里面是4个球队的,不过你照模式改成5个球队的就可以了啊。为方便起见,现将这四个队伍分别命名为A、B、C、D。下面我们分两大类情况讨论 一、 所有比赛都不出现平局1. 请看以下三幅双向连通图:(1) (2) (3)这三幅双向连通图显然表示以下排名及得分的情况为:(1)A:9 D:6 B:3 D:0 这种情况下,显然不存在并列的队伍;(2)(A B C):6 D:0 这种情况下,A B C并列第一,D第二名;(3)D:9 (A B C):3 这种情况下,D第一名,A B C并列第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边这幅双向连通图:如右图所示,此图中各队伍的得分为: A:6 B:3 C:3 D:6此时按照 (A D)(B C)的排名方式或者是按照 A D B C 的排名方式是否就算是公平的排名方式呢? (4)下面我们来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为: 对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0303;0030;3000;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(4)所示的比赛排名结果为:A D C B 二、 比赛中出现平局的情况1. 请看以下三幅双向连通图:这三幅双向连通图显然表示以下排名及得分的情况为:(5)A:7 D:5 B:2 D:1 这种情况下,显然不存在并列的队伍;(6)D:9 (A B C):2 这种情况下,D第一名,A B C并列第二名;(7)(A B C):2 D:0 这种情况下,A B C并列第一,D第二名。以上得分及排名情况并不存在争议,在此我们不做多余的讨论。 2. 请看右边的双向连通图:如右图所示,此图中各队伍的得分为: A:5 B:2 C:2 D:6此时按照 (D A)(B C)的排名方式或者是按照 D A B C 的排名方式是否就算是公平的排名方式呢?同样的我们通过建立数学模型来分析一下:1建立模型: 定义相邻接矩阵如下: 故邻接矩阵为:对于n=4个顶点的双向竞赛连通图,存在正数r,使得邻接矩阵Ar>0,A成为素阵2模型求解: 利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有利用MATLAB新建M文件输入如下代码:A=[0113;1010;1100;0330];V=eig(A);X=max(V)计算得特最大特征值:λ=经过归一化计算后得到矩阵:S =()T所以图(8)所示的比赛排名结果为:D A C B
还有,见到有些地方层次分析法界和着topsis也用了,用来检验的,具体就看不懂了....有什么联系吗?是不是都可以这么用啊???用层次分析法嵌套熵值法,再用topsis检验就没了...
A题:2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题 制动器试验台的控制方法分析汽车的行车制动器(以下简称制动器)联接在车轮上,它的作用是在行驶时使车辆减速或者停止。制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。为了检验设计的优劣,必须进行相应的测试。在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量(忽略车轮自身转动具有的能量)等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。例如,假设有4个飞轮,其单个惯量分别是:10、20、40、80 kg·m2,基础惯量为10 kg·m2,则可以组成10,20,30,…,160 kg·m2的16种数值的机械惯量。但对于等效的转动惯量为 kg·m2的情况,就不能精确地用机械惯量模拟试验。这个问题的一种解决方法是:把机械惯量设定为40 kg·m2,然后在制动过程中,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。一般假设试验台采用的电动机的驱动电流与其产生的扭矩成正比(本题中比例系数取为 A/N·m);且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。现在要求你们解答以下问题:1. 设车辆单个前轮的滚动半径为 m,制动时承受的载荷为6230 N,求等效的转动惯量。2. 飞轮组由3个外直径1 m、内直径 m的环形钢制飞轮组成,厚度分别为 m、 m、 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为 [-30, 30] kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿多大的惯量?3. 建立电动机驱动电流依赖于可观测量的数学模型。在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动秒后车速为零,计算驱动电流。4. 对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。请对该方法执行的结果进行评价。5. 按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。6. 第5问给出的控制方法是否有不足之处?如果有,请重新设计一个尽量完善的计算机控制方法,并作评价。用某种控制方法试验得到的数据 已知条件 扭矩() 转速(rpm) 时间(s) 初转速(rpm) 末转速(rpm) 等效的转动惯量() 机械惯量() 40 0 514 257 48 35 40 40 45 50 55 75 105 110 115 120 150 230 245 245 265 270 280 275 280 280 1 275 280 285 451 285 285 275 280 285 285 285 280 275 280 275 275 285 275 280 285 275 280 280 275 280 2 285 275 270 275 285 285 275 285 285 275 275 280 285 285 275 275 285 275 280 290 285 275 275 280 285 285 285 3 270 275 280 285 285 280 275 285 290 285 275 280 280 280 275 285 285 285 285 285 285 285 285 280 275 275 275 4 285 290 285 275 285 290 285 285 275 280 273 285 290 285 275 285 285
EXPLORATION OF DISTRIBUTING THE SUPPLIES HELP THE DISASTER AREA《灾区救援物资分配问题探讨》APPLICATION OF PRIORITY SERVICE OF QUEUE SYSTEM IN OPHTHALMOLOGY SICKBED ARRANGEMENT《优先服务权的排队系统在眼科病床安排中的应用》ERROR ESTIMATION OF INVERSE PERTURBATION OF CLOSED LINEAR OPERATOR DRAZIN . 《闭线性算子Drazin逆的扰动误差估计》EVALUATION SYSTEM OF STUDENTS’LEARNING STATUS BASED ON COMPREHENSIVE SCORE.《基于综合成绩的学生学习状况评价体系》
0对学生宿舍设计方案的评价摘要关键词:一、 问题重述与分析:学生宿舍事关在校学生在校期间的生活品质,直接或间接的影响到学生的生活、学习和健康成长。学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理,同时要考虑成本和收费的片平衡,这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。经济性主要由以下三方面影响:建设成本、运行成本和收费标准;舒适性主要由以下几方面影响:人均面积、使用方便、互不干扰、采光和通风;安全性主要由以下两方面影响:人员疏散的能力和防盗能力。本文旨在解决以下问题:(一)本题要求根据列举的四种典型的宿舍设计方案进行综合量化分析,对各种宿舍方案的优缺点进行分析、比较,得出每个影响因子对选择其中某一个方案时的权重,在综合全国平均选择水平的基础上,对四个设计方案的各项影响因子进行比较评分,在评得的分数的基础上综合各自的权重比,可以评价出一个较为普遍经济适用的方案。(二)评价这四种典型的学生宿舍设计方案各自的特点(优、缺点)及适用环境。(三)根据全国各个不同区域的经济发展水平、文化习俗等因素的差异,每一种设计方案在不同经济水平的地域城市里的合理度是不尽相同的,可以选择经济发展水平不同的三个城市,然后对经济性、舒适性、安全性重新进行权重赋值,可以对这三类城市在选择宿舍设计方案时的偏好程度进行分析。二、 基本假设:1) 假设全国平均选择水平以网站调查数据为依据;2) 假设所给四种设计方案中的经济性、舒适性、安全性仅考虑各自的直接、主要的影响因子;3) 假设三、 符号说明::方案 的合理度,用来评价方案合理度的目标函数( );:各个影响因子对合理度 的贡献权重 ;:各种影响因子对宿舍设计方案合理度 的影响力 ;:四、 模型的建立与求解:宿舍设计方案的综合量化比较主要包括经济性、舒适性、安全性这三个方面,而且在上述三个方面中,经济性又由三个影响因子组成,舒适性主要由五个影响因子组成,安全性主要有两个影响因子组成。为了评价四个宿舍设计方案的相对合理性,设定一个目标函数值 , 的值越大就表示方案相对越合理。由于各类不同的宿舍设计方案对上述各种不同影响因子的取舍不同,那么各种因子对合理度 的值的贡献也不同,设置各个因子对合理度 的贡献权重为: ,由此得到确切的评价宿舍设计方案的合理度目标函数:模型中权重值 通过层次分析法得到,各种影响因子的影响值 可参照图纸通过五分制打分法得到。(一)用层次分析法计算权重时 ,具体的算法如下所述:1)在认真分析影响宿舍设计方案合理度的各个直接因子(经济性、舒适性、安全性)之间的关系后,我们建立宿舍设计方案的递阶层次结构:2)对同一层次的各个因子关于上一层次中某一准则的重要性进行两两比较,构造两两比较判断矩阵。在构造两两比较判断矩阵的过程中,按1~9比例标度对重要性程度进行赋值。对于任何一个准则,几个被比较元素通过两两比较就可以得到一个判断矩阵:其中 就是 与 相对于 的重要性比例标度。3)根据得到的判断矩阵,我们采用“特征根法”来求解判断矩阵中被比较元素的排序权重向量。对于本模型而言,我们认为经济性比舒适性稍微重要,经济性比安全性略微重要,安全性比舒适性略微重要,依据上述的层次分析方法及1-9比例标度赋值,利用matlab软件计算得到如下各个层次下的判断矩阵和其对应的特征值、特征向量、一致性指标。标 度 含 义1 表示两个因子相比,具有同样重要性3 表示两个因子相比,一个因子比另一个因子稍微重要5 表示两个因子相比,一个因子比另一个因子明显重要7 表示两个因子相比,一个因子比另一个因子强烈重要9 表示两个因子相比,一个因子比另一个因子极端重要2,4,4,8 上述两相邻判断的中值倒数 因素 与 比较的判断 ,则因素 与 比较的判断表1 判断矩阵元素 的标度方法(1)表1 目标层的判断矩阵A B1 B2 B3B1 1 3 2 1/3 1 1/3 1/2 3 1 最大特征值: =一致性指标: = = =表4 随机一次性指标1 2 3 4 5 6 7 8 9 100 0 随机一致性指标: =(查表4)一致性比率: 通过一致性检验(2)表2 准则层B1的判断矩阵B1 C1 C2 C3C1 1 5 4 1/5 1 1/2 1/4 2 1 最大特征值: =一致性指标: = 随即一致性指标: =(查表4)一致性比率: 通过一致性检验(3)表3 准则层B2的判断矩阵B2 C4 C5 C6 C7 C8C4 1 2 4 5 5 0,4375C5 1/2 1 3 4 4 0.2855C6 1/4 1/3 1 3 3 0.1451C7 1/5 1/4 1/3 1 1 1/5 1/4 1/3 1 1 最大特征值: =一致性指标: =随即一致性指标: =(查表4)一致性比率: 通过一致性检验(4)表4 准则层B3的判断矩阵B3 C9 C10C9 1 3 1/3 1 最大特征值: =2在此基础上, 层对 权重总排序 ,结果可下表计算可得:表5 合成排序C B B1 B2 B3 总排序权值 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 综合(1)(2)(3)(4)求得的一次性指标检验值都符合要求,说明上述所得的权重向量是合理的。(二)采用五分制打分法计算以上四个设计方案中各个影响因子的值 如下表:表一:四种设计方案的评分因子方案方案一 5 5 2 2 1 1 5 5 1 2方案二 2 2 5 4 5 3 4 4 4 4方案三 3 2 4 3 4 5 5 4 4 4方案四 2 3 2 5 3 2 4 5 5 5通过函数 用matlab软件求得四种设计方案的合理度为: ; ; ; ;因为 是四个方案中最大合理度,所以我们认为在全国平均水平下,方案三是相对较为合理的方案。而四个方案的最后合理度相差不大,说明以上四种设计方案都是合理的。(二)现在我们根据经济性、舒适性、安全性占整个设计方案中的比例对这四种设计方案分别进行评价:比例结果如下图:图2方案一:该方案建筑面积小,设施布置公共集中,宿舍入住人数较多, 收费比较低廉,经济性好,舒适性差,安全性差,适用于人数较多,考虑经济性比较多,建筑面积有限的环境下采用此种方案;方案二:该方案面积大,入住人数较多,基础设施十分齐全,但造价高,设施浪费严重,经济性比较差,安全性能好,舒适性较好,适用于人数较多但安全性和舒适性要求较高的环境;方案三:该方案入住人数多,设施齐全且布置相对集中,楼梯、阳台、公用设备等布置合理且不浪费,经济性较好,舒适性较好,安全性好,适用于综合考虑三方面要求的环境;方案四:该方案入住人数少,住宿环境宽松,生活设施独立布置,安全性很好,舒适性好,经济性差,适用于人数较少,建筑面积足够大,对舒适性及安全性要求比较高的环境;五、 模型的评价与推广:(一)模型评价该模型在综合全国的平均选择水平的基础上进行比较评价四种宿舍设计方案。优点:该模型能较为明了的描述出:每种设计方案中经济性、舒适性、安全性所占的权重值大小,可以粗糙的分析出三种性能在该方案中的地位;缺点:各项影响因子在建立矩阵,进行标度处理时主观因素影响比较大,对研究设计方案的经济性,舒适性,安全性时,不能很精确的计算出三个主要因素在选择时的权重值(二)模型推广表6 决策层对准则层 的判断矩阵S1 上 海 西 安 武 汉上 海 1 1/5 1/3 西 安 5 1 2 武 汉 3 1/2 1 最大特征值: =一致性指标: =随即一致性指标: =一致性比率: 通过一致性检验表7 决策层对准则层 的判断矩阵S2 上 海 西 安 武 汉上 海 1 5 3 西 安 1/5 1 1/2 武 汉 1/3 2 1 最大特征值: =一致性指标: =随即一致性指标: =一致性比率: 通过一致性检验表8 决策层对准则层 的判断矩阵S3 上 海 西 安 武 汉上 海 1 3 2 西 安 1/3 1 1 武 汉 1/2 1 1 最大特征值: =一致性指标: =随即一致性指标: =一致性比率: 通过一致性检验六、参考文献:[1] 冯楼台 赵贤淑 矩阵论 陕西人民出版社 1994年[2] 周义仓 赫孝良 数学建模实验 西安交通大学出版社 1999年[3] 马莉 MATLAB数学实验与建模 清华大学出版社 2010年[4] 中华人民共和国行业标准 宿舍建筑设计规范 2006年2月1日实施[5][6]七、附录:
还有,见到有些地方层次分析法界和着topsis也用了,用来检验的,具体就看不懂了....有什么联系吗?是不是都可以这么用啊???用层次分析法嵌套熵值法,再用topsis检验就没了...
A题:2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题 制动器试验台的控制方法分析汽车的行车制动器(以下简称制动器)联接在车轮上,它的作用是在行驶时使车辆减速或者停止。制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。为了检验设计的优劣,必须进行相应的测试。在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量(忽略车轮自身转动具有的能量)等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。例如,假设有4个飞轮,其单个惯量分别是:10、20、40、80 kg·m2,基础惯量为10 kg·m2,则可以组成10,20,30,…,160 kg·m2的16种数值的机械惯量。但对于等效的转动惯量为 kg·m2的情况,就不能精确地用机械惯量模拟试验。这个问题的一种解决方法是:把机械惯量设定为40 kg·m2,然后在制动过程中,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。一般假设试验台采用的电动机的驱动电流与其产生的扭矩成正比(本题中比例系数取为 A/N·m);且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。现在要求你们解答以下问题:1. 设车辆单个前轮的滚动半径为 m,制动时承受的载荷为6230 N,求等效的转动惯量。2. 飞轮组由3个外直径1 m、内直径 m的环形钢制飞轮组成,厚度分别为 m、 m、 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为 [-30, 30] kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿多大的惯量?3. 建立电动机驱动电流依赖于可观测量的数学模型。在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动秒后车速为零,计算驱动电流。4. 对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。请对该方法执行的结果进行评价。5. 按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。6. 第5问给出的控制方法是否有不足之处?如果有,请重新设计一个尽量完善的计算机控制方法,并作评价。用某种控制方法试验得到的数据 已知条件 扭矩() 转速(rpm) 时间(s) 初转速(rpm) 末转速(rpm) 等效的转动惯量() 机械惯量() 40 0 514 257 48 35 40 40 45 50 55 75 105 110 115 120 150 230 245 245 265 270 280 275 280 280 1 275 280 285 451 285 285 275 280 285 285 285 280 275 280 275 275 285 275 280 285 275 280 280 275 280 2 285 275 270 275 285 285 275 285 285 275 275 280 285 285 275 275 285 275 280 290 285 275 275 280 285 285 285 3 270 275 280 285 285 280 275 285 290 285 275 280 280 280 275 285 285 285 285 285 285 285 285 280 275 275 275 4 285 290 285 275 285 290 285 285 275 280 273 285 290 285 275 285 285
这个题还是自己好好东莞东脑筋吧……别想不劳而获……
你好,我也是参加今年数学建模大赛的。听老师说,今年很有可能又会碰到大规模数据类型的题目。一对中最好有人会数据挖掘,会spss软件等。。。
已经考过SARS病毒的数学建模了,根据今年的大事表我猜测可能考H1N1或物价评估或经济预测
自己动手丰衣足食啊!!
这个题还是自己好好东莞东脑筋吧……别想不劳而获……