首页

医学论文

首页 医学论文 问题

医学论文的数据如何处理

发布时间:

医学论文的数据如何处理

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

多参考同类型论文,对其结果进行研究,选择结果一致并且可以和你论文里结果一致的,根据百分比对你的数据进行微调即可

可以找人反推出来

医学论文数据如何处理

这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

给你分享几个查数据的平台方便在写论文的时候查找数据1国家统计局这个数据平台非常适合搜集宏观数据~而且可以直接对数据进行处理,绘制柱状图、条形图、饼图,非常方便~2,Wind经济数据库这个数据库整合了海量的全球宏观和行业统计数据~对于商科学生来说非常好用~很多高校都会购买这个数据库供学生查询使用3.中国知网其实中国知网除了可以下载论文,还可以查询数据~这个数据平台包含大量的数据资料~在这里可以找到统计年鉴、分析报告、资料汇编、调查资料、普查资料以及统计摘要~以上就是分享给你的数据平台,希望能够帮助到你,祝你论文加油

统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。

中药学论文数据如何处理

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

如何利用数据分析工具,对自己的文章进行诊断

医学论文的数据如何整理

医学SCI论文的正确写作步骤 一、 收集整理资料 资料要真实,资料的获取一定是作者亲自调查或进行实验所取得的第一手材料。而绝非虚构、伪造或“想当然”。论文中所有数据都要忠实于事实材料,必须经过反复验证,要有据可查,不能主观臆断、弄虚作假。所有数据都必须选择恰当的统计方法进行统计处理。计数资料用绝对数,率,百分比,OR值,标准误,可信限等,统计用条图,圆图,线图,分析用χ2检验;等级数据可用秩和,Ridit分析,统计用条图,圆图,分析用秩和检验,Ridit分析;计量数据用均数,中位数,标准差,标准误,百分位数,参考值,统计用直方图,分析用t检验,方差分析,相关与回归分析等;反应时间用年复发率,年生存率,中位生存时间等,统计用生存率曲线,生存率阶梯图,危险率图等,分析用专门的统计方法,即生存分析(survival analysis)。 二、 编写提纲 编写提纲是把医学论文结构、构思固定下来,它是完善构思,使构思条理化,周密化的一种有效的方法,当然你也可以打好腹稿。编写提纲的好处是你能确定你研究成果总的轮廓、逻辑顺序,可以让你清晰明了你所研究课题,不会造成论文混乱,甚或重复。文章结构应该清晰明了,对于大的主题,应该按各期刊要求加以划分小标题来层层说明。如果没有小标题,读者读起来很吃力,显的杂乱无章,这样的文章读者是不喜欢的。 三、 撰写成稿 初稿应一气呵成,而不要不时的回头去看前面写的是否满意。初学写论文的读者很容易不停的去往上看,是否字写错了,段落是否连贯等等。记住,这只是初稿,以后还要修改的,不时的回头看,会影响自己的思路。初稿完成后,仔细的从头读到尾。看有没有错别字,语法是否有问题。论文写好后还应反复修改,将可有可无的字、句,不必要的数据,甚至图表删除。注意有无文字与表或图的内容重复。最重要的就是是否说清楚了你研究的问题,拿起你写下的主题,看看是否跑题了。对于段落,要注意段落的构成是否单一,完整,段与段之间的衔接是否连贯,紧凑;对于句子,每个句子是否正确的表达了文章内容;对于用词看是否贴切,是否符合习惯用语;修改文章一定要看看文章是否合乎逻辑,合乎多数读者的阅读习惯。参考:查尔斯沃思论文语言润色贴士

我在这里想总结一下在做毕业论文过程中关于“如何进行文献整理以及数据处理”的经验。数据录入:1. 在施测之前,就要对变量的排列有总体的规划,尽量每一次施测的变量排序一致,那样以后录入时才不会混淆;2. 数据录入时,往往用的是数字代码,此时务必做好各个代码所代表的含义的备份,建议用记事本保持,以防时间长了遗忘,带来不必要的麻烦;数据处理:1. 务必做好数据备份,对不同的转换,建立不同的文档;2. 建立数据处理日志,以防当你的数据处理逐渐增多、数据有所转换之后不至于混淆,以及方便进行数据回述和检查;3. 建立“数据”和“结果”文件夹,分开保存数据和处理结果,避免不必要的混乱;4. 在給数据处理的程序命名时,建议按照处理顺序写上“序号.程序处理名称”,如“1.频数分析”、“2.因素分析”,这样可以一目了然地了解你的数据处理过程和数据处理内容;5. 保存具有代表性的数据处理的程序,这样做的好处是,一方面日后进行相同的数据处理时可以直接“copy”“paste”,很方便;另一方面也避免时日一长遗忘了部分程序;文献整理:1. 所收集的中外文献卷帙浩繁,建议保存文件名包括一下内容:“年份.序号.标题”;如“ ”、“ ”;2. 对所有收集的文献进行归类整理,分别放置于不同的文件夹;3. 有时你需要对外文文献摘要整理和翻译,此时建议你把摘要保存于当前文献所在的文件夹;或者专门建立“摘要整理/翻译”文件夹,以保存各类专题的摘要翻译,以防文献一多便混乱了,想要的时候找不到;4. 外文文献摘要整理文件名格式:“摘要整理.专题名.整理日期”。

医学论文撰写的步骤 科学工作的最后环节就是撰写科研论文。在写作之前,应将实验数据逐项进行归纳、整理与 分析,并查阅收集有关的文献,尤其是初学写作的作者,更应阅读、借鉴好的医学论文,然后开始:1 构思 构思是撰写论文的准备,也是开始。它是作者对文章整体布局、要说明的论点以及依据进行 阐明、安排和设计的过程。其内容包括:文章如何开头,如何进一步引深,首尾如何相呼应 ,论据论证如何有效的说明主题以及各段落层次与主题之间的关系。 2 提纲 在反映思考,理清思路,并形成条目后,写出提纲。提纲是论文的基本骨架,有了提纲,作 者写起来就会目标明确,思路开通。提纲的内容主要是按题题目、前言(文章的宗旨目的)、 实验材料与方法、讨论与结论的顺序进行。 3 写作 在提纲拟定后,根据自己的思路,妥当安排内容的先后次序,然后将自己的`观点充分表达。 在写作初稿时,不妨内容写的全一些,面宽一些,避免有重要内容遗漏。而且,最好能集中 一段时间和精力,使文章一气呵成。 4 修改 在文章的初稿完成后,应征求各方面的意见,尤其是共同的工作者与指导者。然后加以反复 推敲并作细致的修改。文章全部完成后,最好放置一段时间,再行修改。"温故而知新"常 可发现重要问题,因而需要多次修改。 修改的重点是:①篇幅压缩;②结构调整:期刊论文要求结构严谨、层次清晰、衔接得当、 重点突出并有逻辑性;③语言修改:应具有准确性与可读性。对于"国内首创"、"国内空 白"应有确切的依据,并避免应用"大约"、"可能"之类的字眼,还应避免应用非专业术 语;④内容修改:根据自己写作的意图或要论证的内容材料,使内容修改的更为翔实、观点 明确、结构严谨、论据充足。 (五)医学论文的发表 作者撰写论文的目的是能够发表。因而对投寄的期刊必须有所了解,做到"知己知彼"。医 学期刊按照批准的级别可分全国性、省市性等,按照学术水平可分成高级、中级与初级,按 照内容可分成综合性、专业性以及文摘性。所以在投寄前应认真阅读稿约,并分析刊出文章 的水平、特点,并与自己的文章相比较,以决定是否投寄。对于有新理论、新发现、新方法 、或引进国内先进技术、或有技术上有重大改进,或临床观察更为深入、标本数量更大、随 访观察时间久,有重要的经验教训等,均可积极投稿。投稿应严守稿约,按照稿约的规定整 理并投寄。切忌一稿多投。 总之,科研工作、资料处理以及论文的撰写遇一项复杂的工作,需要我们不断地实践、不断 地总结,以积累经验。预祝大家在今后的工作中,取得更加丰硕的成果。 请继续阅读相关推荐: 毕业论文

多去看下别人的文章 学习下

医学论文数据如何整理的

我在这里想总结一下在做毕业论文过程中关于“如何进行文献整理以及数据处理”的经验。数据录入:1. 在施测之前,就要对变量的排列有总体的规划,尽量每一次施测的变量排序一致,那样以后录入时才不会混淆;2. 数据录入时,往往用的是数字代码,此时务必做好各个代码所代表的含义的备份,建议用记事本保持,以防时间长了遗忘,带来不必要的麻烦;数据处理:1. 务必做好数据备份,对不同的转换,建立不同的文档;2. 建立数据处理日志,以防当你的数据处理逐渐增多、数据有所转换之后不至于混淆,以及方便进行数据回述和检查;3. 建立“数据”和“结果”文件夹,分开保存数据和处理结果,避免不必要的混乱;4. 在給数据处理的程序命名时,建议按照处理顺序写上“序号.程序处理名称”,如“1.频数分析”、“2.因素分析”,这样可以一目了然地了解你的数据处理过程和数据处理内容;5. 保存具有代表性的数据处理的程序,这样做的好处是,一方面日后进行相同的数据处理时可以直接“copy”“paste”,很方便;另一方面也避免时日一长遗忘了部分程序;文献整理:1. 所收集的中外文献卷帙浩繁,建议保存文件名包括一下内容:“年份.序号.标题”;如“ ”、“ ”;2. 对所有收集的文献进行归类整理,分别放置于不同的文件夹;3. 有时你需要对外文文献摘要整理和翻译,此时建议你把摘要保存于当前文献所在的文件夹;或者专门建立“摘要整理/翻译”文件夹,以保存各类专题的摘要翻译,以防文献一多便混乱了,想要的时候找不到;4. 外文文献摘要整理文件名格式:“摘要整理.专题名.整理日期”。

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

相关百科

热门百科

首页
发表服务