首页

医学论文

首页 医学论文 问题

医学论文怎么避开统计学

发布时间:

医学论文怎么避开统计学

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....

你去中国论文中心看看 是专业的论文网站 内容很多且是免费下载

基础知识的话找本应用数理统计就可以了,要写论文建议再看一下计量经济学!非常有用。

怎么避开医学论文查重

努力写成千上万字的毕业论文,如果被论文查重系统检测较高的查重率,会被推迟毕业,对学生来说绝对是一件不可原谅的事情。那么,毕业论文怎样避免查重?今天paperfree小编 给大家讲解。 1.研究毕业论文的查重软件。 我们应该知道,每所学校论文查重软件是不同的。为了避免查重率,我们必须首先知道我们学校使用的论文查重软件是什么。换句话说,我们应该弄清楚哪些句子和观点是重复的,哪些应该被引用,哪些必须转述为我们自己的语言。我们要知道怎么避免查重,才能有针对性的进行降重。 2.写毕业论文时,把别人的观点转化为自己的话。 在撰写毕业论文时,如果不是最后的手段,就不要引用太多。过多的引用,无论哪个版本的重复检测,重复率都太高了。这时候我们需要用自己的话语重新进行表达。最好的方法是在阅读论文和作品后用自己的话来表达它们。在写论文时,必须有必要的表达和描述能力。我们可以通过别人的观点 提出我们自己的新观点,这样就不会跟别人论文重复。 3.将写好的毕业论文放入查重软件中检测,根据查重报告修改。 论文初稿写完后,不要着急提交论文给学校。你可以提前找一个论文查重系统进行检测。检查你的论文查重率,看看你是否符合学校要求的毕业标准。此外,最重要的是,我们必须看看哪些部分是高重合率,我们必须关注修改。即使在论文查重范围内,也需要相应地调整和修改高重复部分。防止被抄袭。

首先大家要了解论文查重是怎么查的、是查什么等问题,弄清楚之后大家才能更好的避免查重时重复率过高。查重,“查”就是检查检测的意思,“重”就是重复相似的意思,论文查重自然就是检查论文中重复相似的内容,然后计算重复率。避免论文重复率过高就要减少论文内容中重复相似的部分。对论文进行查重检测需要通过专门的论文查重系统进行,国内目前主流的论文查重系统是知网查重、维普查重和万方查重等。进行查重检测时就是将写好的论文上传提交至论文查重系统,然后由查重系统按照设定的查重算法将论文与数据库中的文献资源进行比对,比对出重复的部分就会计算所占整篇论文的比重也就是论文的最终重复率结果。写论文修改论文时为避免查重率过高就需要对查重系统进行一个了解,了解这些查重系统的优势和盲区,才能更好的避免查重。在写作论文过程中可以对摘抄复制的内容转化成图片表格等形式,因为现在的查重系统对这部分内容检测还不完善,能够有效防止被检测出重复。除此之外,可以将想要摘抄的内容换一种形式进行改写,将文字改写,就能够有效防止完全复制的文字重复。当然更要紧的还是提高自己论文的原创程度,才能够真正的不用担心和避免论文重复率过高。

大部分论文都是在答辩结束前进行查重,但许多人不知道如何避免查重测试不合格,因为如果在提交论文之前没有自我审查,或者没有通过正规的查重软件的审核和修改调整,就很可能会出现不合格的情况,那么又该如何避免不合格的情况发生呢?

由于在论文查重软件中,有很多论文内容都不需要查重检测,所以如果想了解如何避免论文查重检测不合格的情况,就是要特别注意修改对论文格式的调整,尤其是目录、附录等不需要查重检测的内容,大家都是要对格式修改进行调整的,这样,论文查重系统遇到这部分格式后,才能确定这部分不在查重检测的范围之内,这样就可以有效地规避查重检测问题发生。

事实上,怎样避免论文查重不合格,更多的还是要提前进行论文查重检测。任何人写出的论文都不能保证达到学校的要求,因此,提前做好论文的查重检测工作十分重要,是要特别注意使用专业的查重软件,这样才能让我们知道自己的论文

许多学生可能对如何避免论文查重不合格的处理方法不太了解,或者想降低论文重复性,不知道该怎么解决。假如你已经完成了查重作业,那么下一步要做的就是确定好修改和

如果修改调整,句子就会出现同义词和句型转换,而且还会用自己的话语重新描述。分段可作简单的修改调整,也可直接进行中英文互译,多译几次内容就会完全不同,修改调整好就可以。

实际上,怎样避免论文检查不合格的方法有很多,主要是看论文出现了什么问题,如果在检查前不想去修改和调整论文检查不合格的话,论文检查不合格的比例不一定能降低。而每个人都是不接就直接把重复的内容删去,因为在许多情况下,或许删去了重复的内容之后,论文总字数就会减少很多,这样也会影响论文的重复率。

要避免论文查重,有几个方法可以尝试:

医学论文统计数据怎么统计

去知网找,那里肯定有你要的论文,自己可以先搜搜看,不知道怎样找的话,可以去我百度空间里,有如何在网络上找论文的文章介绍

我来帮帮你大哥风范复合化肥 大哥你也真是,咋在这做广告来了,,你看你,这题目可是关于医学论文的。你怎么做广告也不看地方。真是浪费发帖者的心血。。哎!可悲啊!

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

医学论文怎么统计

医学论文都是计算字符数,表格另行计算,乘以百分比。字数总计=字符数+表格所占字符数。

具体的统计学分析方法,我在网上看到过这方面的视频,是赵清波教授讲的,您可以去创新医学网上找他的视频。她从编辑、审稿的角度介绍避免此类错误的技巧,为医学论文的编审工作提供借鉴。

医学统计论文

医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。

摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。

关 键词 :医学统计;方法;运用;原理;选择

一、统计学方法简介

统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。

二、试验设计中的统计学原理

合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。

医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。

三、统计学方法的选择

统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。

四、常见统计学方法的误用分析及对策

1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。

2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。

五、结论表述中的统计学应用

资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。

参考文献:

[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.

[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.

我的论文共4页,如何计算字符,选中后点word

医学论文统计学怎么计算

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

按插图的公式计算,得中位数M=,百分位数,百分位数

统计学意义(p值)ZT 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,的p值通常被认为是可接受错误的边界水平。 在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果≥p>被认为是具有统计学意义,而≥p≥被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。 所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。

相关百科

热门百科

首页
发表服务