首页

医学论文

首页 医学论文 问题

医学论文中的P值和N

发布时间:

医学论文中的P值和N

结果p值都很小,显著性越高,样本量则越少。 同一批数据,只用里面的一部分数据时,样本量减小,p值就全不显著。 样本量其实就是样本的数量。

论文中p值也叫检验p值是否定原假设的强度。

p值统计学意义是结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标。

P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。 如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。 总之,P值越小,表明结果越显著。

p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。

然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。

医学论文中的f值t值和p值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

我们常常在统计学应用中看到P值,F值,T值,这些参数是什么?我想应该先讲讲“假设检验”,弄明白假设检验,很多问题就通了。

本文首先介绍了假设检验在统计学的位置,然后从 显著性检验 、 P值的疑问 、 假设检验方法的使用 三个角度描述假设检验。

统计学按照发展阶段和侧重点不同,可分为描述统计学和推断统计学 [1]

描述统计学 是阐述如何对客观现象的数量表现进行计量表示; 推断统计学 主要阐述如何根据部分数据(样本统计量)去推论总体的数量特征及规律性的一系列理论和方法

假设检验(hypothesis testing)作为推断统计学的重要部分,用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

常用的假设检验方法有Z检验、T检验、卡方检验、F检验等 [2]

显著性检验(significance test)是假设检验的一种最常用的方法,用于检测实验组与对照组是否有差异以及差异是否显著的办法。

因为显著性检验<假设检验<推断统计学,所以显著性检验具有以下特点:

小概率事件实际不可能性原理是显著性检验的基本原理,如果P小于阈值 ,表明事件是小概率事件,存在发生的可能性但可能性不大甚至不可能发生,所以认为 大概率不会发生,拒绝原假设。

显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了所愿意承担的风险。 通常取α=或α=。这表明,当作出决策时,其正确的可能性为95%或99%,有或α=下错结论的风险。

置信度也称为可靠度,或置信水平、置信系数 置信度 = 1-α

什么是显著性差异?

H0和H1的设置,不管在什么场景要满足:

赌场上你想检查一下抛掷的硬币是否被动过手脚,要求抛几次硬币看结果是不是公平的。 总共扔了十次,也都是“花”朝上,认为很可能这枚硬币不是公平的。

这就是假设检验: 你提出假设:说硬币是正常的 (H0:硬币是正常的;H1:硬币不正常) 我提出要检验你的假设:扔十次,看实验的结果是不是和你的假设相符

反复扔硬币应该符合二项分布

总共扔10次硬币,那么是出现7次正面之后,可以认为“硬币是不公平的”,还是在出现9次正面以后认为“硬币是不公平”,这是一个主观标准,看你能够承担的风险有多大,也就是显著性水平 。

例如取 为, ,则认为原假设是小概率事件,拒绝原假设,认为硬币不正常,存在显著性差异(和正常硬币的抛掷分布情况很不一样)。 由于取 为,所以这个决策有95%的准确性。

P值是指在特定的统计假设模型下,数据的某个统计指标(如两组样本均数之差)等于观察值或比观察值更为极端的概率。

上文显著性检验就是比较P值和 之间的关系做出决策,但对P值的争议很大,因此需要单独讲一讲P值。

目前科学界对P值的使用存在很大的置疑,认为P值是是扰人烦的蚊子,是皇帝的新衣,比“毫无用处”还糟糕 [6] 。

林泽民教授2016/6/6在台湾政大社科院的演讲,题目为《看电影学统计:p值的陷阱》提到统计学很快会有很重大的改变,传统的作法:用P值来作统计检定的作法,大概再过几年就不容易再存在。

2018年1月22日,美国政治学顶级学术期刊《政治分析》在他们的官方twitter上宣布从2018年的开始的第26辑起禁用p值。根据该刊的声明,其主要原因是:“p值本身无法提供支持相关模式或假说之证据。”

在临床试验中P值的使用尤为普遍,用来检验药物的有效性,P值问题使得近半数的相关论文可靠性被推翻。

为什么说P值是个陷阱?为什么P值本身无法支持相关模式或假说之证据?

主要原因是因为:P值只能对样本数据负责,但模型的意义在于推断总体,所以总有以偏概全的风险存在。同时,因为P值易受样本操控,而很多研究为了得到想要的结论,往往是不断调整样本量,直到得到想要的结果 [8] 。

P值本身是没有问题的,但如果单纯只依赖P值是否小于 做出决策却也是不可取的,学术界反对的是P值的滥用。

美国统计协会(American Statistical Association,ASA)全面透彻地梳理了统计界关于P值的统计意义并形成共识 [7] :

而常用统计推断检验方法分为两大类:参数检验和非参数检验

根据总体数据是否服从某种分布,采用参数检验和非参数检验两种检验方法,具体使用哪种检验方法根据属性和要求决定。

某公司运营团队为了针对活跃度提升专题运营活动的效果进行测试,从同样群体中抽出两组人群,一组运营组,一组对照组。30天后运营活动结束后,想要知道该次针对性运营是否有效,两组活跃度分数是否差异明显?

T检验是数据化运营效果分析中应用最多的方法和技术。使用要求为:1)样本组之间独立;2)每组样本来自正态分布总体;3)两个独立样本方差相等。

虽然两组都是独立的,但两组样本的总体不一定是正态分布的,方差也不一定相等,我们可以采用非参数检验—wilcoxon符号秩检验。

wilcoxon符号秩检验适用于两个独立样本间的两两比较。

如果不能确定总体是否为正态分布,则只能退而求其次用非参数检验的方法。如果满足T检验要求,有限考虑T检验的结果。

[1] 推断统计学: [2] 假设检验: [3] 显著性水平: [4] 显著性差异: [5] 统计学假设检验中 p 值的含义具体是什么? [6] 统计学里“P”的故事:蚊子、皇帝的新衣和不育的风流才子: [7] 临床试验中P值的意义及结果: [8] P值的陷阱: [9] 非参数检验:

医学论文中的统计值和P值

在统计学中,t值和p值通常用于假设检验。它们是两个不同的概念。

一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料

二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。

扩展资料:

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。

t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。

戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。

P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。

参考资料:百科-P值  百科-t检验

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

一、P> 表示无显著性差异;

二、P值计算方法:

三、扩展资料:关于P值(资料来源:网页链接)

医学论文中p值和f值

1、t值是t检验的统计量值,t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、F值是F检验的统计量值。F检验是一种在零假设(nullhypothesis,H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P值,一般以P<为有统计学差异,P<为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于、、。扩展资料:F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。参考资料:百度百科——假设检验中的P值百度百科——F检验百度百科——t检验

F值是检验计量模型的总体显著水平。

原理:显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的几率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。

经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。

显著性检验的基本思想可以用小概率原理来解释:

1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。

2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。

以上内容参考:百度百科-显著性检验

F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。

P值表示不拒绝原假设的程度。简而言之,P<表示假设更可能是正确的,反之则可能是错误的。

r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和。

P值是衡量控制组与实验组差异大小的指标,意思是P值小于.05,表示两组存在显著差异,意思是P值小于.01,表示两组的差异极其显著,可以用SPSS统计,根据自变量应该是果蝇的性别,因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。

另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。

扩展资料:

F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。

F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为,该检验的稳健型还是相当可靠的。

参考资料来源:百度百科-F检验

医学论文中的N值

是专业术语的意思。其中N值是Numbers,表示样本含量。SD值是标准差,是描述一组变量离散分布的统计量。M值是Mean,算数平均值。三线表通常只有3条线,即顶线、底线和栏目线。其中顶线和底线为粗线,栏目线为细线。当然,三线表并不一定只有3条线,必要时可加辅助线,但无论加多少条辅助线,仍称做三线表。三线表的组成要素包括:表序、表题、项目栏、表体、表注。

n代表样本数

相关百科

热门百科

首页
发表服务