计算过程如下:
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
左侧检验 H0:μ≥μ0 vs H1:μ<μ0
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(Z≤ZC|μ=μ0)
右侧检验 H0:μ≤μ0 vs H1:μ>μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(Z≥ZC|μ=μ0)
双侧检验 H0:μ=μ0 vs H1:μ≠μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(Z≥|ZC||μ=μ0)
X^2计算如下:
统计学的英文statistics最早源于现代拉丁文Statisticum Collegium(国会)、意大利文Statista(国民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。
十九世纪,统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里士多德时代,迄今已有两千三百多年的历史。
它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”、“政治算数”和“统计分析科学”三个发展阶段。
所谓“数理统计”并非独立于统计学的新学科,确切地说,它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而是属于数学的范畴。
你这个每组的出现创面渗出或者创面感染的数目太少了,卡方检验要求每个格子中的理论频数t均大于5或1评论00加载更多
X=(X1+X2+...+Xn)/n就是用直接法求算术均数再平方;P=L+(n*x%-f{L})*i{x}/f{x}{}内为右下角标这下应该不难了~
卡方检验 以 P value 检查 数据 是否可信
卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。
你给的信息太少了,不知道你要求什么的P值啊?你把整体的题目给出来啊!
是概率p值和卡方值sas程序:data nn;input x$ y$ count@@;cards;ob l 84 ob m 36 ob h 3 co l 42 co m 74 co h 8 ;proc freq;tables x*y /chisq expected;weight count;run;结果:卡方值= p <
统计学中的X平方念作卡方。统计学中的P值和卡方计算方法是:先根据资料特点选择适合的卡方检验公式,将资料数据带入公式计算得到卡方值,再根据已经确定的检验水准结合自由度,通过查专用工具表即卡方值表,查得对应的接受假设的界值,将计算得到的卡方值与此值比较,从而得到接受假设的概率值,即P值。
不知道你想要计算的是总的卡方还是每组之间的比较:根据你提供的数据:X2= , df = 5, p= 两组之间差异有统计学意义
是概率p值和卡方值sas程序:data nn;input x$ y$ count@@;cards;ob l 84 ob m 36 ob h 3 co l 42 co m 74 co h 8 ;proc freq;tables x*y /chisq expected;weight count;run;结果:卡方值= p <
你这个每组的出现创面渗出或者创面感染的数目太少了,卡方检验要求每个格子中的理论频数T均大于5或1 这得用Fisher确切概率吧。。。。卡方貌似做不了 你把各组30例原始数据拿来可以直接统计分析,你所给的数据不能分析。 统计中t值和p值的区别为: 1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。 p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。 3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。 扩展资料: 1、T检验的适用条件: (1) 已知一个总体均数; (2)可得到一个样本均数及该样本标准差; (3) 样本来自正态或近似正态总体 2、P值数据解释: 参考资料:百度百科_P值百度百科_t检验 t=(样本平均值-总体平均值)/[标准差/√n]~t(n-1)求出t值后,查t值表,就可得到p值。 统计学中,P值是用来判定假设检验结果的一个参数。 如果P值很小,说明原假设情况的发生的概率很小,且P值越小,表明结果越显著。 为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。 左侧检验 H0:μ≥μ0 vs H1:μ<μ0 P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≤Z|μ=μ0) 右侧检验 H0:μ≤μ0 vs H1:μ>μ0 P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≥Z|μ=μ0) 双侧检验 H0:μ=μ0 vs H1:μ≠μ0 P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(ZC≥|Z||μ=μ0) 扩展资料: t检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。 单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。 双总体t检验又分为两种情况,一是独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性;一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。 参考资料来源:百度百科--t检验 如果是计算两组间机械化静脉炎、置管局部感染、导管阻塞、血栓形成、导管异位的差异:X^2 = , df = 4, p= 结论,试验组与对照组各病之间差异无统计学意义。 X=(X1+X2+...+Xn)/n就是用直接法求算术均数再平方;P=L+(n*x%-f{L})*i{x}/f{x}{}内为右下角标这下应该不难了~ 采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法 假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。医学论文如何算t值p值
医学论文x值和p值怎么算