首页

医学论文

首页 医学论文 问题

医学论文常用统计表怎么写

发布时间:

医学论文常用统计表怎么写

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

用stata,或spss软件来做。excel很麻烦,不行的。

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

医学论文常用统计表怎么做

统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。

可通过以下步骤:1、合理安排统计表的结构。比如行标题、列标题、数字资料的位置应安排合理。2、表头一般应包括表号、总标题和表中数据的单位等内容。总标题应简明确切地概括出统计表的内容,一般需要表明统计数据的时间、地点以及何种数据。3、如果表中的全部数据都为同一计量单位,可在表的右上角标明,若各指标的计量单位不同,则应在每个指标后标明或单独列出标明。4、在使用统计表时,必要时可在表的下方加上注释,特别要注明资料来源,以表示对他人劳动成果的尊重,方便读者的查阅使用。

可通过以下步骤:

1、合理安排统计表的结构。比如行标题、列标题、数字资料的位置应安排合理。

2、表头一般应包括表号、总标题和表中数据的单位等内容。总标题应简明确切地概括出统计表的内容,一般需要表明统计数据的时间、地点以及何种数据。

3、如果表中的全部数据都为同一计量单位,可在表的右上角标明,若各指标的计量单位不同,则应在每个指标后标明或单独列出标明。

4、在使用统计表时,必要时可在表的下方加上注释,特别要注明资料来源,以表示对他人劳动成果的尊重,方便读者的查阅使用。

可以采取以下步骤: 1、合理安排统计表的结构。例如,行标题、列标题、数字数据的位置要合理安排。2、表头一般应包括表号、总标题、表中数据的单位。总标题应简洁明了地概括统计表的内容。

医学论文常用统计表

常见的统计表按统计表的作用分有三种,按统计表的分组情况分有三种,按统计表所显示的数列性质分有三种。

一、按统计表的作用分类:

1、在统计中用于搜集和登记原始统计资料的调查表;

2、在统计资料整理过程中使用的汇总表或整理表;

3、在统计分析过程中对统计整理资料进行定量分析使用的分析表。

二、按统计表的分组情况分类:

1、未经任何分组,仅罗列各总体单位或按时间顺序排列的简单表;

2、只对某一个项目的数据进行统计的表格,叫做单式统计表,也叫做简单统计表。

3、统计项目在两个或两个以上的统计表格,叫做复式统计表。

三、按统计表所显示的数列性质分类:

时间数列表、空间数列表、时空数列结合表。

1、统计表构成:一般由表头(总标题)、行标题、列标题和数字资料四个主要部分组,必要时可以在统计表的下方加上表外附加。

2、统计表结构

表头应放在表的上方,它所说明的是统计表的主要内容,是表的名称。

行标题和列标题通常安排在统计表的第一列和第一行,它所表示的主要是所研究问题的类别名称和指标名称,通常也被称为“类”。

表外附加通常放在统计表的下方,主要包括资料来源、指标的注释、必要的说明等内容。

参考资料来源:百度百科—统计表

统计表和统计图都是对数据资料进行整理后所得结果的表现形式。用表和图来呈现数字,通过表和图,可以知道数据说明了什么。直观可视的图表可以增强调查报告的明了程度和效果。常用的统计图主要有圆饼图、条形图、直方图和折线图四种。不同层次的变量其统计图的制作也不相同。一般情况下,定类变量用圆饼图或条形图;定序变量用条形图;定距变量用直方图或曲线图。常用的统计图主要有圆饼图、条形图、直方图和折线图四种。不同层次的变量其统计图的制作也不相同。一般情况下,定类变量用圆饼图或条形图;定序变量用条形图;定距变量用直方图或曲线图。(1)圆饼图。圆饼图又称饼状图、圆形图等,它可以显示一个整体怎样分成几个部分。要画圆饼图,先要画个圆,圆代表总体100%,圆里面的扇形就代表各个部分,各扇形的圆心角和各部分的大小成比例,用圆心角360°乘以各个部分的百分比就得到了这个部分的扇形度数。

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?

一般都会先通过搜索引擎搜索吧,因为可以搜索到其他网站或者问答提到的量表,借此机会就能找到自己想要的量表内容,或者可以购买量表集合的书籍

医学论文常用统计表格

论文研究对象那个表是论文研究对象基线资料。

通常医学科研论文的第一张表格汇总的是研究对象基线资料,也称为Table1,tableone命令也存在一定的缺陷,如不能提供组间比较的统计量,又如符合正态分布的变量。

会以均数(标准差)形式表示,这些对SCI文章来说,是比较正常的。国内杂志需要我们提供组间比较的统计量,而且符合正态分布的变量,通常是以均数±标准差的形式表示。

论文研究对象基线资料表示技巧

数值变量,符合正态性,用均数(标准差)表示,采用t检验比较组间差异;不符合正态性,中位数(四分位数间距)表示,采用Man-Whitney U检验比较组间差异。分类变量采用频数(百分比)表示,采用卡方检验或精确概率法进行比较组间差异。

多组比较,数值变量,符合正态性,用均数(标准差)表示,采用方差分析比较组间差异;不符合正态性,用中位数(四分位数间距)表示,采用 检验比较组间差异。分类变量采用频数(百分比)表示,采用卡方检验或精确概率法进行比较组间差异。

统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。

用stata,或spss软件来做。excel很麻烦,不行的。

医学论文常用统计图表

在论文中一般来说插入图表要使用EXCEL,将统计表的数据做成饼状、线状、或者柱状等等,直观反映数据内涵,将做成的图表复制到WORD里面,排版,ok了,希望对你有帮助。

一般地,作者会在文章正文中明确解释问题1,粗略地解释2,试图证明问题3。而问题2的相关细节会散落在正文的results、discussion、methods/experimental section中,以及图释和supporting information里。越是专业的人,越要读得细致,要思考方法上有没有不同于传统方法的地方,方法本身是否可信。图中的各种细节也要特别留心,比如轴、坐标、单位的意义,极值、拐点的意义,error bar的大小,scale bar的大小,等等等等。搞清楚方法,具体到各个细节,那么文章是否可信自然可以得到结论。如果感觉不可信,可以找其他专业人士乃至作者本人讨论。由于编辑和审稿人的精力、水平、研究经历等可以理解的原因,很多经受了同行评审的文章一样有大量疑点(虽然比未经同行评审的文章要可靠得多)。如果读的过程中有概念/方法不理解,最可靠但是也最耗时的方法是根据文中列举的参考文献按图索骥。不知道题主的专业领域是什么。如果不在相关领域,需要的知识基础是不太可能在一个晚上就建立起来的。如果是这种情况,我的建议是:找一个专业领域的靠谱朋友,请他/她吃顿饭,让他/她帮忙解释一下。如果是专业领域内的东西而暂时超出自己的知识范畴(如果没记错,题主现在上大二?),其实最省时省力高效的办法还是找该领域的高年级研究生师兄师姐或靠谱学霸解释一下。如果不方便,找其他有相关研究经验的同学讨论也好。对于自己专业内相关程度特别高的概念和方法,最好还是去读一下原文。

1. 全文的中心思想是什么2. figure legend:基本上能把图表的中心思想,各个panel是什么描述清楚3. 正文result中哪些地方应用了这个图,如(Figure1a blablabla):这个就是作者从这些数据里得到了什么结论,支持哪个假设神马的;偷懒的话看result里的小标题4. 具体到每个图表的话,x axis,y axis是神马(注意某些作者会通过改变y axis的来达到视觉上dramatic,striking的效果,在比较前后panel的时候要注意),sample和control分别是神马,有没有significant之类的;偷懒的话就看下那些和control有significant difference

卫生统计学常用的统计图有7种,名称及适用类型资料如下:

1、条图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。条形统计图可以清楚地表明各阶段数量的多少,是统计图资料分析中最常用的图形

2、百分条图和圆图:又称扇形图,描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。百分条图用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3、线图:用线条的升降表示事物的发展变化趋势,适用于连续性资料,反映事物在时间上的发展变化的趋势,或某现象随另一现象变迁的情况。

4、半对数线图:以纵轴为对数尺度,横轴为算术尺度的线图。在对数尺度上,同样的增长速度其距离的改变相等,因此常用半对数线图比较事物的发展速度。

5、直方图:描述计量资料的频数分布。

6、散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。常用来描述两种现象的相关关系。

7、统计地图:描述某种现象的地域分布。

扩展资料:

20世纪初以来,科学技术迅猛发展,社会发生了巨大变化,统计学进入了快速发展时期。由社会、经济统计向多分支学科发展。在20世纪以前,统计学的领域主要是人口统计、生命统计、社会统计和经济统计。

随着社会、经济和科学技术的发展,到今天,统计的范畴已覆盖了社会生活的一切领域,几乎无所不包,成为通用的方法论科学。它被广泛用于研究社会和自然界的各个方面,并发展成为有着许多分支学科的科学,卫生统计学就属于统计学的一门学科分支。

卫生统计学主要包括两方面内容:

1、健康统计,包括医学人口统计、疾病统计和生长发育统计等;

2、卫生服务统计,包括卫生资源利用、医疗卫生服务的需求、医疗保健体制改革等方面的统计学问题。

参考资料来源:百度百科—卫生统计学

参考资料来源:百度百科—统计学

参考资料来源:百度百科—统计图

参考资料来源:百度百科—半对数线图

参考资料来源:百度百科—散点图

相关百科

热门百科

首页
发表服务