首页

医学论文

首页 医学论文 问题

医学论文指数怎么算出来的

发布时间:

医学论文指数怎么算出来的

指数的每个成分,加权后得到指数。以股票指数为例,一个指数只有2个成分股A和B。A的市值6亿元,B得市值4亿元。初始指数一般都为100点。那么当A股股价和股本不变,即市值依然为6亿元;B股涨了10%,股本不变,市值亿元时,指数也就相应得到达104点。原本占指数60%得A不变,贡献60点指数,占40%的B从原来40点增加10%,到44点,即总共104点。现实中的计算更复杂...

以某个时点作为基点,通过报告期市值除以基期市值再乘以基期指数得到报告期的指数,各个指数的编制都有点区别主要是市值的选择,如上证综合指数是使用总市值,而沪深300采用的是流通股。一上证综合指数为例:上证综合指数是指上海证券交易所从1991年7月15日起编制并公布的、以全部上市股票为样本、以股票发行量为权数,按加权平均法计算的股价指数。它以1990年12月19日为基期,基期指数定为100点。 以发行量为权数的加权综合股价指数。上证综合指数综合反映上交所全部 A股、B股上市股票的股份走势。该指数自l991年7月15日起开始实时发布。基期及基点: =100 指数计算:以样本股的发行股本数为权数进行加权计算,计算公式为:报告期指数=报告期成份股的总市值 / 基 期 × 基期指数;其中,总市值 = ∑(市价×发行股数)。样本选择标准:上海证券交易所挂牌上市的全部上市股票。

一提起论文价值,恐怕首先想到的是影响因子。尤其是在中国,影响因子对于科研人员和工作者真是命根,晋级,升迁,申请基金,评奖等等无不与影响因子有关。但是除了影响因子,还有许多其它的评价论文价值的方法。本文就介绍一下常见和新兴的评价论文价值的指标。评价一个论文价值,无非从量化和质化两个方面来评价,或者期刊和论文的角度来评价。下面提到的指标,有的是从量化,有的是从质化,有的是从期刊角度,有的是从文章角度。影响因子影响因子确切说是针对期刊的,而并非直接针对论文的。影响因子应该是一个量化和半质化的指标。为何?这是因为高影响因子的期刊低水平的文章也并非没有,低影响因子高水平的论文也大有存在。当然,如果论文婆家找的好,自身的身份也就自然高了。正如以前的皇妃,可能整个素质比一般大众好,可以平民中也大有出类拨粹的人物存在。因此,现在影响因子也是饱受垢病。有的人戏称SCI是stupid chinese idea,其中的原因也就不多说了。查看影响因子的方法有多种,最经典的方法当然是Web of Science,但是收费,一般人用不起。简单方便的方法可以使用医学文献助手:利用医学文献助手筛查PubMed文献质量引用次数这个就不用多介绍了吧。很多数据库和在线查询平台都可以实现引用次数的查看,例如Google和微软学术搜索Microsoft Academic Search,还有利用医学文献助手筛查PubMed文献质量H指数(H Index)H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的计算基于其研究者的论文数量及其论文被引用的次数。赫希认为:一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H指数就是N。可以按照如下方法确定某人的H指数:将其发表的所有SCI论文按被引次数从高到低排序;从前往后查找排序后的列表,直到某篇论文的序号大于该论文被引次数。所得序号减一即为H指数。以上有关H指数的内容来自维基百科查看H指数的最简单的方法就是利用Google Scholar,注意是英文版的,中文版的不要。另外FireFox和Chrome也有相应的插件可以选用。I10指数(I10-Index)I10-index是由Google提出来的,指作者发表文章数被引用10次以上的个数。比如我发表了100篇文章(呵呵,有点大了啥),其中90篇被他人引用了10次以上,那么本人的I10-index就是90。如果说影响因子是针对期刊的话,那么H指数和I10指数就是针对个人的。论文的影响因子高,只能说该论文找了一个好婆家,具体引用情况并不一定。而H指数和I10指数就是确切反应论文引用的一种量化标准。G指数(G-Index)G-Index(G指数)相比于上述几个指标来有点默默无闻。G-Index是由Leo Egghe于2006年提出的, 评价作者论文数量的一个指标。G指数的计算方法如下把所有作者发表文章按照引用次数降序排列,序号为g把作者所有发表文章的序号进行平方,得到g2把作者所有文章的引用次数进行加法,得到∑TC最后一个∑TC仍大于g2的序号就是G指数。有点绕哈,没事举个例子更清楚一些,比如我发表了以下文章,按照引用次数进行排序如下引用次数(TC) 序号 (g) 文章引用 次数之和 (∑TC) g^2 47 1 47 1 42 2 89 4 37 3 126 9 36 4 162 16 21 5 183 25 18 6 201 36 17 7 218 49 16 8 234 64 16 9 250 81 16 10 266 100 15 11 281 121 13 12 294 144 13 13 307 169 13 14 320 196 13 15 333 225 12 16 345 256 12 17 357 289 12 18 369 324 12 19 381 361 11 20 392 400 … … … … 由上表可以看出我的H指数是13,g指数是19,因为第20个文献g2已经大于前面所有引用次数之和了。(该例子数值来源于Egghe. An Improvement of the H-Index: the G-Index)G指数相比于H指数和I10指数,更能反应论文整个引用情况。比如我发表的文章,总体都不高,可能H指数比较高,可是一算G指数立马原形毕露,原来是水货一枚。H5指数(H5-index)和H5中位数(H5-median)H指数、I10指数和G指数是针对个人论文引用次数的统计,而H5指数和H5中位数(H5-median)是针对杂志引用次数的一种评价体系。H5指数H5指数是过去5年之内某一杂志所发表的论文数相比于引用数的最小值,如Nature杂志过去5年之内发表了1000篇文章(当然实际数值比这个大),按照每篇论文的引用数进行降序排列第381位的文章的引用数是381,而382的文章引用数是300,那么Nature的H5指数就是381H5相较于IF,是反应杂志过去5年文章的引用情况,而IF是反应的杂志平均引用情况。H5相较于H指数,是针对杂志的总体情况,而H指数是针对于个人论文的引用情况。有时候不同影响因子的杂志,H5可能一样。如PLoS One和Nature Reviews Immunology的H5都是130,可是两者的影响因子相差可不止一个档次。H5中位数H5中位数(H5-median)是指所用文章引用次数的中位数。为毛不用平均数?因为资料不是正态分布。每一个杂志的文章引用次数肯定不会是平均分布的,正如我国居民收入一样。有的引用次数肯定很大,可是有的文献可能很水,引用次数少的可怜。如果平均无法反应真实的引用情况,中位数最佳的选择。F1000F1000(Faculty of 1000)是为生物学及医学研究人员提供评估服务的二次文献数据库,是由英国BioMed Central出版的一种新型在线研究辅助工具,包括生物学(Biology)和医学(Medicine)两大系列。 其目前是给生命科学研究者一个新的评价体系,而不仅仅依赖于是否被SCI收录。医学F1000:由2400多位世界顶级的临床专家、学者收集和评价,提供目前世界上最重要的医学论文信息及发展趋势。它包括18个领域:麻醉和镇痛、心血管疾病、重症监护和急诊医学、皮肤病学、糖尿病和内分泌病学、循证医学、胃肠病和肝病学、血液病学、感染性疾病、肾病学、神经疾病、肿瘤学、心理学、公共卫生和流行病学、呼吸系统疾病、风湿和临床免疫、泌尿病学、女性健康。该网站文献与PubMed及PubMed Central进行了链接。生物学F1000:由2300多位专家学者的评价,提供目前世界上最重要的生物学论文信息及研究趋势。涵盖学科领域:生物学、生物化学、生物信息学、生物技术、癌症生物学、心血管生物学、细胞生物学、化学生物学、发育生物学、生态学、进化生物学、胃肠生物学、基因组学和遗传学、免疫学、代谢及内分泌学、微生物学、分子生物学、分子医学、神经科学、药理学与药物发现、生理学、植物生物学、肾生物学、呼吸生物学、结构生物学。主要特点主要对PubMed收录的重要论文的进行客观评估,评估依据是以学术成就而非该期刊是否被SCI收录;参加评议的成员分别由美国和欧洲等国际知名机构的著名专家组成。根据论文对当前世界生物和医学研究的贡献程度和科学价值,通过客观反映学术水平的指标(F1000因子)给予评分,每日将最近一个月内的极少数优秀论文推荐给读者,并提供Pubmed链接。F1000三个等级分别为9分(杰出)、6分(必读)和3分(推荐)。以上有关F1000的内容来自百度百科。因此F1000相比于影响因子,多人工挑选的干预,其分值高的研究意义就比较重大。F1000应该是一个质化的指标,最简单的实时查看F1000的方法也可以使用医学文献助手。聊完了传统的评价指标,再扒一扒新兴的论文评价指标AltmetricAltmetric是一个新兴的指标,虽然字面意思是替代指标,但是我认为「社会化影响力」或者「网络影响因子」或者「分享因子」更能反应其本质。Altmetric出现的背景可能大家遇到这么一种情况,有的论文发表以后,被大家广泛转载,网络新闻报道,Twitter或者G+上评论和分享。这时,影响因子和F1000就不能反应这些了。Altmetric就是在这种情况下出现的,Altmetric就是反应某一论文分享、下载、阅读的情况。但是现在Altmetric争议也比较大,关于名字都有争议。我个人认为InterMetric更好,简称IM,有点和实时通讯软件混了啥。SocialMetirc,简称SM,有点变态了哈。有关Altmetric更多详情可以参阅此文:利用Altmetric评价系统了解论文的关注度分享情况类似的还有Plum Metrics (利用Plum Metrics评价系统了解论文的关注度分享情况)和Impactstory(这个可能要挂代理)RG ScoreRG Score(RG因子)是ResearchGate推出的一个评价作者的指标。RG Score推出的目的是为了帮助评价自己在科学圈内的处于一个啥水平。计算方法并不是自我发表了多少文章,而是自己的科研工作被同行认可以程度。RG Score不同于传统评价指标在于可以统计更多的信息,如下载,浏览、分享等。RG Score不同于Altmetric之处在于RG Score更测重于分享。如果和同行分享自己的Idea,并得到同行的认可和讨论,那么RG Score增长很快。更多有关RG Score的详情可以查看此文:ResearchGate科研人员自己的FaceBook

h指数可用于评估研究人员的学术产出数量与学术产出水平。如果作者的Np篇论文中的h篇至少被h引文,而另一篇(Np-h)篇论文被h引文,则科学家的索引为h,每个最多被引用一次。

g指数是h指数的衍生指数。首先需要绘制与图h指数相同的图表。将超过h分数限制的项目的引用总数加起来,然后找到该引用集的子集的平均值。如果作者在她列出的h个部分中有一些引用率很高的文章,那么他们就会使该人的g得分远高于其h得分。

如果h得分为5表示作者至少有5篇论文,且每篇论文至少被五次引文引用;如果h分数为10意味着他有10篇论文,且每篇论文至少被引用10次。

g指数的注意事项:

论文按被引次数排序后相对排前的累积被引至少g2次的最大论文序次g,亦即第(g+1)序次论文对应的累积引文数将小于(g+1)2。

2006年, Egghe提出了g指数, g指数定义为:论文按被引次数排序后相对排前的累积被引至少g2次的最大论文序次g,亦即第(g+1)序次论文对应的累积引文数将小于(g+1)2。从定义可以看出,g≥h,而按被引量排序靠前的文章的被引次数越大,g指数越大。

医学论文p值怎么算出来的

P值即为拒绝域的面积或概率。

P值的计算公式是

=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;

=1-Φ(z0)  当被测假设H1为 p大于p0时;

=Φ(z0)   当被测假设H1为 p小于p0时;

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。

1、左侧检验

P值是当  时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

2、右侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

3、双侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。

p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。

参考资料:百度百科—P值

P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。p值的计算公式:=2[1-φ(z0)]当被测假设h1为p不等于p0时;=1-φ(z0)当被测假设h1为p大于p0时;=φ(z0)当被测假设h1为p小于p0时;其中,φ(z0)要查表得到。z0=(x-n*p0)/(根号下(np0(1-p0)))最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。注意,这里p0是那个缺少的假设满意度,而不是要求的p值。没有p0就形不成假设检验,也就不存在p值统计学上规定的p值意义:p值碰巧的概率对无效假设统计意义p>碰巧出现的可能性大于5%不能否定无效假设两组差别无显著意义p<碰巧出现的可能性小于5%可以否定无效假设两组差别有显著意义p<碰巧出现的可能性小于1%可以否定无效假设两者差别有非常显著意义

医学论文指数怎么算的

上边的9是最高级,你可以定义你的最高级的数字。

引用次数这个就不用多介绍了吧。很多数据库和在线查询平台都可以实现引用次数的查看,例如Google和微软学术搜索Microsoft Academic Search,还有利用医学文献助手筛查PubMed文献质量H指数(H Index)H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的计算基于其研究者的论文数量及其论文被引用的次数。赫希认为:一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H指数就是N。可以按照如下方法确定某人的H指数:将其发表的所有SCI论文按被引次数从高到低排序;从前往后查找排序后的列表,直到某篇论文的序号大于该论文被引次数。所得序号减一即为H指数。以上有关H指数的内容来自维基百科查看H指数的最简单的方法就是利用Google Scholar,注意是英文版的,中文版的不要。另外FireFox和Chrome也有相应的插件可以选用。I10指数(I10-Index)I10-index是由Google提出来的,指作者发表文章数被引用10次以上的个数。比如我发表了100篇文章(呵呵,有点大了啥),其中90篇被他人引用了10次以上,那么本人的I10-index就是90。如果说影响因子是针对期刊的话,那么H指数和I10指数就是针对个人的。论文的影响因子高,只能说该论文找了一个好婆家,具体引用情况并不一定。而H指数和I10指数就是确切反应论文引用的一种量化标准。G指数(G-Index)G-Index(G指数)相比于上述几个指标来有点默默无闻。G-Index是由Leo Egghe于2006年提出的, 评价作者论文数量的一个指标。

SCI指数意思是期刊所有文章年度被引用的平均数,反映期刊受关注和应用的程度。

SCI指数是根据中国科研工作者(含医学临床、基础、生物、化学等学科)对SCI杂志的认知度、熟悉程度以及投稿的量等众多指标综合评定而成。

SCI基本概念:

SCI(科学引文索引)一般指科学引文索引(Science Citation Index,简称SCI),美国科学信息研究所(ISI)的尤金·加菲尔德(Eugene Garfield)于1957年在美国费城创办的引文数据库。

SCI(科学引文索引)、EI(工程索引)、ISTP(科技会议录索引)是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具。

以上内容参考百度百科 - 科学引文索引

计算公式有两种:当严重度用分级代表值表示时: 病情指数=100×∑(各级病叶数×各级代表值)/(调查总叶数×最高级代表值);当严重度用百分率表示时: 病情指数=普遍率×严重度

医学论文中的P怎么算出来的

卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。

P值即为拒绝域的面积或概率。

P值的计算公式是

=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;

=1-Φ(z0)  当被测假设H1为 p大于p0时;

=Φ(z0)   当被测假设H1为 p小于p0时;

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

扩展资料:

用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。

1、左侧检验

P值是当  时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

2、右侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

3、双侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。

p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。

参考资料:百度百科—P值

医学论文指数怎么算

一提起论文价值,恐怕首先想到的是影响因子。尤其是在中国,影响因子对于科研人员和工作者真是命根,晋级,升迁,申请基金,评奖等等无不与影响因子有关。但是除了影响因子,还有许多其它的评价论文价值的方法。本文就介绍一下常见和新兴的评价论文价值的指标。评价一个论文价值,无非从量化和质化两个方面来评价,或者期刊和论文的角度来评价。下面提到的指标,有的是从量化,有的是从质化,有的是从期刊角度,有的是从文章角度。影响因子影响因子确切说是针对期刊的,而并非直接针对论文的。影响因子应该是一个量化和半质化的指标。为何?这是因为高影响因子的期刊低水平的文章也并非没有,低影响因子高水平的论文也大有存在。当然,如果论文婆家找的好,自身的身份也就自然高了。正如以前的皇妃,可能整个素质比一般大众好,可以平民中也大有出类拨粹的人物存在。因此,现在影响因子也是饱受垢病。有的人戏称SCI是stupid chinese idea,其中的原因也就不多说了。查看影响因子的方法有多种,最经典的方法当然是Web of Science,但是收费,一般人用不起。简单方便的方法可以使用医学文献助手:利用医学文献助手筛查PubMed文献质量引用次数这个就不用多介绍了吧。很多数据库和在线查询平台都可以实现引用次数的查看,例如Google和微软学术搜索Microsoft Academic Search,还有利用医学文献助手筛查PubMed文献质量H指数(H Index)H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的计算基于其研究者的论文数量及其论文被引用的次数。赫希认为:一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H指数就是N。可以按照如下方法确定某人的H指数:将其发表的所有SCI论文按被引次数从高到低排序;从前往后查找排序后的列表,直到某篇论文的序号大于该论文被引次数。所得序号减一即为H指数。以上有关H指数的内容来自维基百科查看H指数的最简单的方法就是利用Google Scholar,注意是英文版的,中文版的不要。另外FireFox和Chrome也有相应的插件可以选用。I10指数(I10-Index)I10-index是由Google提出来的,指作者发表文章数被引用10次以上的个数。比如我发表了100篇文章(呵呵,有点大了啥),其中90篇被他人引用了10次以上,那么本人的I10-index就是90。如果说影响因子是针对期刊的话,那么H指数和I10指数就是针对个人的。论文的影响因子高,只能说该论文找了一个好婆家,具体引用情况并不一定。而H指数和I10指数就是确切反应论文引用的一种量化标准。G指数(G-Index)G-Index(G指数)相比于上述几个指标来有点默默无闻。G-Index是由Leo Egghe于2006年提出的, 评价作者论文数量的一个指标。G指数的计算方法如下把所有作者发表文章按照引用次数降序排列,序号为g把作者所有发表文章的序号进行平方,得到g2把作者所有文章的引用次数进行加法,得到∑TC最后一个∑TC仍大于g2的序号就是G指数。有点绕哈,没事举个例子更清楚一些,比如我发表了以下文章,按照引用次数进行排序如下引用次数(TC) 序号 (g) 文章引用 次数之和 (∑TC) g^2 47 1 47 1 42 2 89 4 37 3 126 9 36 4 162 16 21 5 183 25 18 6 201 36 17 7 218 49 16 8 234 64 16 9 250 81 16 10 266 100 15 11 281 121 13 12 294 144 13 13 307 169 13 14 320 196 13 15 333 225 12 16 345 256 12 17 357 289 12 18 369 324 12 19 381 361 11 20 392 400 … … … … 由上表可以看出我的H指数是13,g指数是19,因为第20个文献g2已经大于前面所有引用次数之和了。(该例子数值来源于Egghe. An Improvement of the H-Index: the G-Index)G指数相比于H指数和I10指数,更能反应论文整个引用情况。比如我发表的文章,总体都不高,可能H指数比较高,可是一算G指数立马原形毕露,原来是水货一枚。H5指数(H5-index)和H5中位数(H5-median)H指数、I10指数和G指数是针对个人论文引用次数的统计,而H5指数和H5中位数(H5-median)是针对杂志引用次数的一种评价体系。H5指数H5指数是过去5年之内某一杂志所发表的论文数相比于引用数的最小值,如Nature杂志过去5年之内发表了1000篇文章(当然实际数值比这个大),按照每篇论文的引用数进行降序排列第381位的文章的引用数是381,而382的文章引用数是300,那么Nature的H5指数就是381H5相较于IF,是反应杂志过去5年文章的引用情况,而IF是反应的杂志平均引用情况。H5相较于H指数,是针对杂志的总体情况,而H指数是针对于个人论文的引用情况。有时候不同影响因子的杂志,H5可能一样。如PLoS One和Nature Reviews Immunology的H5都是130,可是两者的影响因子相差可不止一个档次。H5中位数H5中位数(H5-median)是指所用文章引用次数的中位数。为毛不用平均数?因为资料不是正态分布。每一个杂志的文章引用次数肯定不会是平均分布的,正如我国居民收入一样。有的引用次数肯定很大,可是有的文献可能很水,引用次数少的可怜。如果平均无法反应真实的引用情况,中位数最佳的选择。F1000F1000(Faculty of 1000)是为生物学及医学研究人员提供评估服务的二次文献数据库,是由英国BioMed Central出版的一种新型在线研究辅助工具,包括生物学(Biology)和医学(Medicine)两大系列。 其目前是给生命科学研究者一个新的评价体系,而不仅仅依赖于是否被SCI收录。医学F1000:由2400多位世界顶级的临床专家、学者收集和评价,提供目前世界上最重要的医学论文信息及发展趋势。它包括18个领域:麻醉和镇痛、心血管疾病、重症监护和急诊医学、皮肤病学、糖尿病和内分泌病学、循证医学、胃肠病和肝病学、血液病学、感染性疾病、肾病学、神经疾病、肿瘤学、心理学、公共卫生和流行病学、呼吸系统疾病、风湿和临床免疫、泌尿病学、女性健康。该网站文献与PubMed及PubMed Central进行了链接。生物学F1000:由2300多位专家学者的评价,提供目前世界上最重要的生物学论文信息及研究趋势。涵盖学科领域:生物学、生物化学、生物信息学、生物技术、癌症生物学、心血管生物学、细胞生物学、化学生物学、发育生物学、生态学、进化生物学、胃肠生物学、基因组学和遗传学、免疫学、代谢及内分泌学、微生物学、分子生物学、分子医学、神经科学、药理学与药物发现、生理学、植物生物学、肾生物学、呼吸生物学、结构生物学。主要特点主要对PubMed收录的重要论文的进行客观评估,评估依据是以学术成就而非该期刊是否被SCI收录;参加评议的成员分别由美国和欧洲等国际知名机构的著名专家组成。根据论文对当前世界生物和医学研究的贡献程度和科学价值,通过客观反映学术水平的指标(F1000因子)给予评分,每日将最近一个月内的极少数优秀论文推荐给读者,并提供Pubmed链接。F1000三个等级分别为9分(杰出)、6分(必读)和3分(推荐)。以上有关F1000的内容来自百度百科。因此F1000相比于影响因子,多人工挑选的干预,其分值高的研究意义就比较重大。F1000应该是一个质化的指标,最简单的实时查看F1000的方法也可以使用医学文献助手。聊完了传统的评价指标,再扒一扒新兴的论文评价指标AltmetricAltmetric是一个新兴的指标,虽然字面意思是替代指标,但是我认为「社会化影响力」或者「网络影响因子」或者「分享因子」更能反应其本质。Altmetric出现的背景可能大家遇到这么一种情况,有的论文发表以后,被大家广泛转载,网络新闻报道,Twitter或者G+上评论和分享。这时,影响因子和F1000就不能反应这些了。Altmetric就是在这种情况下出现的,Altmetric就是反应某一论文分享、下载、阅读的情况。但是现在Altmetric争议也比较大,关于名字都有争议。我个人认为InterMetric更好,简称IM,有点和实时通讯软件混了啥。SocialMetirc,简称SM,有点变态了哈。有关Altmetric更多详情可以参阅此文:利用Altmetric评价系统了解论文的关注度分享情况类似的还有Plum Metrics (利用Plum Metrics评价系统了解论文的关注度分享情况)和Impactstory(这个可能要挂代理)RG ScoreRG Score(RG因子)是ResearchGate推出的一个评价作者的指标。RG Score推出的目的是为了帮助评价自己在科学圈内的处于一个啥水平。计算方法并不是自我发表了多少文章,而是自己的科研工作被同行认可以程度。RG Score不同于传统评价指标在于可以统计更多的信息,如下载,浏览、分享等。RG Score不同于Altmetric之处在于RG Score更测重于分享。如果和同行分享自己的Idea,并得到同行的认可和讨论,那么RG Score增长很快。更多有关RG Score的详情可以查看此文:ResearchGate科研人员自己的FaceBook

引用次数这个就不用多介绍了吧。很多数据库和在线查询平台都可以实现引用次数的查看,例如Google和微软学术搜索Microsoft Academic Search,还有利用医学文献助手筛查PubMed文献质量H指数(H Index)H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的计算基于其研究者的论文数量及其论文被引用的次数。赫希认为:一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H指数就是N。可以按照如下方法确定某人的H指数:将其发表的所有SCI论文按被引次数从高到低排序;从前往后查找排序后的列表,直到某篇论文的序号大于该论文被引次数。所得序号减一即为H指数。以上有关H指数的内容来自维基百科查看H指数的最简单的方法就是利用Google Scholar,注意是英文版的,中文版的不要。另外FireFox和Chrome也有相应的插件可以选用。I10指数(I10-Index)I10-index是由Google提出来的,指作者发表文章数被引用10次以上的个数。比如我发表了100篇文章(呵呵,有点大了啥),其中90篇被他人引用了10次以上,那么本人的I10-index就是90。如果说影响因子是针对期刊的话,那么H指数和I10指数就是针对个人的。论文的影响因子高,只能说该论文找了一个好婆家,具体引用情况并不一定。而H指数和I10指数就是确切反应论文引用的一种量化标准。G指数(G-Index)G-Index(G指数)相比于上述几个指标来有点默默无闻。G-Index是由Leo Egghe于2006年提出的, 评价作者论文数量的一个指标。

① 计算总分:每一项目均为两级回答。凡回答“是”者,记1分。回答“否”记0分。全部项目得分相加即得出CMI的总分。② 计算M-R分将MYR部分每一项目的得分相加,即得出M-R值。3.筛查界值的参考值在美国常用的筛查界值,总分为30分,M-R为10分。许丽英等将CMI翻译成中文,并进行了初步修订。在中国医学生、内科门诊病人和神经症病人中试测结果表明,CMI总分和M-R分能够较为敏感地反映不同人群精神障碍的程度。并提出不同性别筛查标准参考值。男性总分≥35分,M-R分≥15分;女性总分≥40分,M-R≥20分。该界值有较好的效度,总分值敏感度,男女分别为和,M-R分值敏感度,男女分别为81. 8%和75. 0%。此参考值有待在大数量人群的试测出加以验证。

相关百科

热门百科

首页
发表服务