首页

医学论文

首页 医学论文 问题

医学论文中常见的t值

发布时间:

医学论文中常见的t值

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。

计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。

2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。

参考资料:百度百科-统计学

1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。

扩展资料:

F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

参考资料:

百度百科——假设检验中的P值

百度百科——F检验

百度百科——t检验

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

你好,不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的, T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值为~之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。希望对你有帮助,谢谢!

医学论文中的t值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

t检验注意事项

1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行)。

只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。

在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。

1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。

扩展资料:

F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

参考资料:

百度百科——假设检验中的P值

百度百科——F检验

百度百科——t检验

医学论文中的f值t值和p值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

我们常常在统计学应用中看到P值,F值,T值,这些参数是什么?我想应该先讲讲“假设检验”,弄明白假设检验,很多问题就通了。

本文首先介绍了假设检验在统计学的位置,然后从 显著性检验 、 P值的疑问 、 假设检验方法的使用 三个角度描述假设检验。

统计学按照发展阶段和侧重点不同,可分为描述统计学和推断统计学 [1]

描述统计学 是阐述如何对客观现象的数量表现进行计量表示; 推断统计学 主要阐述如何根据部分数据(样本统计量)去推论总体的数量特征及规律性的一系列理论和方法

假设检验(hypothesis testing)作为推断统计学的重要部分,用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

常用的假设检验方法有Z检验、T检验、卡方检验、F检验等 [2]

显著性检验(significance test)是假设检验的一种最常用的方法,用于检测实验组与对照组是否有差异以及差异是否显著的办法。

因为显著性检验<假设检验<推断统计学,所以显著性检验具有以下特点:

小概率事件实际不可能性原理是显著性检验的基本原理,如果P小于阈值 ,表明事件是小概率事件,存在发生的可能性但可能性不大甚至不可能发生,所以认为 大概率不会发生,拒绝原假设。

显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了所愿意承担的风险。 通常取α=或α=。这表明,当作出决策时,其正确的可能性为95%或99%,有或α=下错结论的风险。

置信度也称为可靠度,或置信水平、置信系数 置信度 = 1-α

什么是显著性差异?

H0和H1的设置,不管在什么场景要满足:

赌场上你想检查一下抛掷的硬币是否被动过手脚,要求抛几次硬币看结果是不是公平的。 总共扔了十次,也都是“花”朝上,认为很可能这枚硬币不是公平的。

这就是假设检验: 你提出假设:说硬币是正常的 (H0:硬币是正常的;H1:硬币不正常) 我提出要检验你的假设:扔十次,看实验的结果是不是和你的假设相符

反复扔硬币应该符合二项分布

总共扔10次硬币,那么是出现7次正面之后,可以认为“硬币是不公平的”,还是在出现9次正面以后认为“硬币是不公平”,这是一个主观标准,看你能够承担的风险有多大,也就是显著性水平 。

例如取 为, ,则认为原假设是小概率事件,拒绝原假设,认为硬币不正常,存在显著性差异(和正常硬币的抛掷分布情况很不一样)。 由于取 为,所以这个决策有95%的准确性。

P值是指在特定的统计假设模型下,数据的某个统计指标(如两组样本均数之差)等于观察值或比观察值更为极端的概率。

上文显著性检验就是比较P值和 之间的关系做出决策,但对P值的争议很大,因此需要单独讲一讲P值。

目前科学界对P值的使用存在很大的置疑,认为P值是是扰人烦的蚊子,是皇帝的新衣,比“毫无用处”还糟糕 [6] 。

林泽民教授2016/6/6在台湾政大社科院的演讲,题目为《看电影学统计:p值的陷阱》提到统计学很快会有很重大的改变,传统的作法:用P值来作统计检定的作法,大概再过几年就不容易再存在。

2018年1月22日,美国政治学顶级学术期刊《政治分析》在他们的官方twitter上宣布从2018年的开始的第26辑起禁用p值。根据该刊的声明,其主要原因是:“p值本身无法提供支持相关模式或假说之证据。”

在临床试验中P值的使用尤为普遍,用来检验药物的有效性,P值问题使得近半数的相关论文可靠性被推翻。

为什么说P值是个陷阱?为什么P值本身无法支持相关模式或假说之证据?

主要原因是因为:P值只能对样本数据负责,但模型的意义在于推断总体,所以总有以偏概全的风险存在。同时,因为P值易受样本操控,而很多研究为了得到想要的结论,往往是不断调整样本量,直到得到想要的结果 [8] 。

P值本身是没有问题的,但如果单纯只依赖P值是否小于 做出决策却也是不可取的,学术界反对的是P值的滥用。

美国统计协会(American Statistical Association,ASA)全面透彻地梳理了统计界关于P值的统计意义并形成共识 [7] :

而常用统计推断检验方法分为两大类:参数检验和非参数检验

根据总体数据是否服从某种分布,采用参数检验和非参数检验两种检验方法,具体使用哪种检验方法根据属性和要求决定。

某公司运营团队为了针对活跃度提升专题运营活动的效果进行测试,从同样群体中抽出两组人群,一组运营组,一组对照组。30天后运营活动结束后,想要知道该次针对性运营是否有效,两组活跃度分数是否差异明显?

T检验是数据化运营效果分析中应用最多的方法和技术。使用要求为:1)样本组之间独立;2)每组样本来自正态分布总体;3)两个独立样本方差相等。

虽然两组都是独立的,但两组样本的总体不一定是正态分布的,方差也不一定相等,我们可以采用非参数检验—wilcoxon符号秩检验。

wilcoxon符号秩检验适用于两个独立样本间的两两比较。

如果不能确定总体是否为正态分布,则只能退而求其次用非参数检验的方法。如果满足T检验要求,有限考虑T检验的结果。

[1] 推断统计学: [2] 假设检验: [3] 显著性水平: [4] 显著性差异: [5] 统计学假设检验中 p 值的含义具体是什么? [6] 统计学里“P”的故事:蚊子、皇帝的新衣和不育的风流才子: [7] 临床试验中P值的意义及结果: [8] P值的陷阱: [9] 非参数检验:

医学论文中t值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

T值和Z值是骨密度报告单中最重要的两个指标。

1、T值

T值是用受检者的骨密度值与同性别正常青年人的骨密度平均值进行比较,即T值 =(受检者BMD值一青年人BMD均值/青年人BMD标准差,含义为受检者比青年人BMD的差异。

T值是一个相对的数值,临床上通常用T值来判断人体的骨密度是否正常。-1﹤ T值﹤1 示骨密度值正常;﹤T值﹤-1 表示骨量低、骨质流失;T值﹤表示骨质疏松症。

2、Z值

Z值是将受检者骨密度测得值与同年龄的人群比较得出的值,判断受检者与同龄人BMD的差异。

Z值也是一个相对的数值,其根据同年龄、同性别和同种族分组,将相应检测者的骨密度值与参考值作比较。-2﹤Z值表示骨密度值在正常同龄人范围内;Z值≤-2 表示骨密度低于正常同龄人。当出现低于参考值的Z值时,应引起病人和临床医生的注意。

而Z值正常并不能表明完全没有问题,例如老年人Z值正常不能代表其发生骨质疏松性骨折的可能性很小。因为同一年龄段的老年人随着骨量丢失,骨密度呈减少态势,其骨骼的脆性也进一步增加,此时更需要参照 T 值来准确判断骨密度情况。

扩展资料:

“骨密度”,全称“骨骼矿物质密度”,是骨骼强度的一个主要指标,以每平方厘米克(g/c㎡)表示,是一个绝对值。骨密度检查是通过调查中国北方汉族健康人的骨密度值做为标准,用每个人测出的数值去对比这个标准。

1、对于中老年人,T值更具有临床判定意义。当T值为-1到时,提示骨密度减低,当T值<时,提示为骨质疏松。

2、对于儿童、绝经前女性及小于50岁男性,更需要看Z值。但是与T值直接提示为骨质疏松不同的是,Z值即便<-2,也只是提示骨密度降低,“考虑”为骨质疏松,要确诊是否是骨质疏松,还要结合实际情况才能判断。

骨密度t值表示通过监测所得的骨密度与正常年轻人群的骨密度相比较,得到的高于正常的标准差,高出或低于用正负号来表示,是衡量骨质疏松症的常用指标。如脊柱t值正常值一般是。

而z值指的是将测得的骨密度值与同龄人的骨密度值相比较而得,可以反应骨质疏松的程度,脊柱骨密度z值正常值一般是,不同部位的的骨密度值会有所不同。

参考资料来源:百度百科-骨密度

t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

t检验注意事项

1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行)。

只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。

在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。

1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。

扩展资料:

F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

参考资料:

百度百科——假设检验中的P值

百度百科——F检验

百度百科——t检验

医学论文中的t值概念

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。

计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。

2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。

参考资料:百度百科-统计学

一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料

二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。

扩展资料:

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。

t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。

戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。

P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。

参考资料:百科-P值  百科-t检验

T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。

P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

拓展资料

R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)

Fisher的具体做法是:

假定某一参数的取值。

选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值。

如果

如果P值>,说明结果更倾向于接受假定的参数取值。

可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。

因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。

参考资料来源:百度百科-t检验百度百科-P值

相关百科

热门百科

首页
发表服务