7月12日,一则云南省昆明市盘龙小学六年级学生陈某石通过研究突变基因“在结直肠癌发生发展中的功能与机制”,获得全国青少年科技创新大奖的信息,在社交媒体中广为传播。有网友指出,这样的科研水平,远远超出一个小学六年级学生的认知范围,“背后肯定存在严重的学术腐败,呼吁严查。”
一所985大学在读博士生李玲表示,根据陈同学的实验记录,刚开始他连基因是什么都不清楚,“连基因是什么都不知道的小朋友,怎么可能明白基因片段和癌症直接的关系?”
在水木社区论坛里,网友跟帖评论,“牛,直接进中科院读博士吧。这得从小在实验室做实验,听报告长大的。关键是要有狂热的兴趣才能实现。”“这一看就是父母研究这一块的啊,这篇大概是个医学硕士生的水平了。”
知名医疗媒体账号“丁香园”评论说,“纵观整个获奖项目,不论是项目的立意,还是后期具体的实验设计,都和一个硕士、甚至博士研究生的科研水平一般无二。”
扩展资料
网传获奖学生父母是中科院研究员
网络上有传言称,陈同学的父母是中国科学院昆明动物研究所肿瘤信号转导学科组的两位研究员,陈同学正是在父母的帮助下完成了课题研究。
有科研人员发文表示,期刊《National Science Review》2019年发表了一份研究成果,来自中科院昆明动物所的研究人员比较分析了多个家养动物适应青藏高原遗传机制的个性和共性特征,鉴定出一个新的低氧通路基因C10orf67。
根据这篇论文的介绍,C10orf67是一个受到正选择的与低氧耐受相关的基因,可以减少细胞在缺氧条件下的凋亡率,并认为C10orf67或许会在肿瘤的发生发展中起到潜在作用。值得注意的是,相关论文的作者,正是被指为陈同学父母的两位中科院昆明动物研究所研究员。
7月13日,上游新闻记者多次拨打被指为陈同学父母的中科院昆明动物研究所两位研究员的办公电话,但始终无人接听,相关采访邮件截止发稿时也未收到回复。
7月13日,上游新闻记者联系了全国青少年创新大赛组委会,对方表示对于相关情况应联系云南赛区组委会。云南赛区组委会则称,接受采访的权限在云南省科协。
云南省科协负责青少年创新大赛的相关人士表示,他们已经注意到了相关的舆论讨论,但目前没有进一步的说明,“去年比赛时陈同学的答辩通过了,云南这边就把他的项目推荐到了全国赛。”
对于公众关心的相关比赛中是否存在学术造假等问题,云南省科协相关人士没有正面回复。
参考资料来源:中国青年网—小学生研究基因获全国大奖受质疑
你好!晋中昕儿很荣幸可以回答您的问题!据有关资料和民间经验显示,苦菜具有治疗胃病的良好效果,并且有相关实验表明,苦菜还能解尼古丁毒,由此推断,苦菜中可能含有1中物质能与尼古丁发生中和。最后得出1种假设:人体中含有1组内源性物质,1种与尼古丁相似,另1种与苦菜中的某1物质相似。在正常情况下,2者相互中和;若尼古丁类似物含量多,就会引发胃病。关键词:苦菜,尼古丁,内源性物质,胃病正文:家乡苦菜很多,有人用它治疗胃病,效果很好,于是产生了兴趣,通过资料对其研究,发现,它确实有许多值得关注的地方。论文 毕业论文网苦菜为菊科植物苦苣菜Sonchuso1eraceusL.山苦荬Ix-erischinsnsis(Thunb.)Nakai.抱茎苦荬菜(Houtt.)Stebb.的嫩叶,又名苦荬、苦马菜。1—2年生草本植物。苦菜每百克嫩叶含水分91克,蛋白质克,脂肪克,碳水化合物4克,钙120毫克,磷52毫克,胡萝卜素毫克,维生素毫克,维生素C12毫克等。苦菜性味苦寒,具有清热解毒、凉血的功效。用于治痢疾、黄疸、血淋、痔瘘、疗肿等。《滇南本草》载“凉血热,寒胃,发肚腹中请积,利水便。”《本草纲目》载“治血淋痔疹”。脾胃虚寒者忌食。[1]苦菜治疗胃病的事实已经被许多人所证实,且效果良好;苦菜能提高口味,健胃,春天吃苦菜的话能健胃提高消化功能,还能抗暑。[2]近年来有关专家又发现苦菜中含有与尼古丁中合的成份,所以苦菜茶又是吸烟或被动吸烟者的最佳饮品。这里举1例:六十年代初,有人常到野外捉蜥蜴充饥,祖父告诉他,苦菜根里的白汁能解毒。1次此人捉了只蜥蜴,从祖父长烟管里抠出点烟油子,涂在蜥蜴嘴里,它很快就昏死了过去,再用苦菜根中的白汁抹在它嘴里,蜥蜴转眼间便复活了。由此看来,多吃苦菜、多饮苦菜茶对身体健康是十分有益的。有人曾对苦菜解尼古丁之毒做过如下实验:1、苣卖菜简述及问题的提出苣卖菜(geerusderiovlolo)又名取卖菜、苦菜,菊科,多年生草本,叶基生包茎,下部带紫红色,黄色舌状花,我国各地普遍野生。其茎、叶及主根中均有白色乳汁,汁与空气接触后由白色变为深褐色,时间1长还会凝成胶质体,幼苗可食。其药用功能早巳载入我国中医学宝库。药名败酱,全草入药,主要成分含香豆素、甾帖类,主治肠痛、疮疖肿痛、肠炎、痢疾、带下产后淤血、痔疮等疾病,可解蚊、虫咬毒,具有清热解毒、消肿排脓祛淤等功能。根据我们在几种动物体进行试验的结果,苣卖菜还可以解尼古丁之毒。我们认为,这1课题值得研究和探讨。道理很清楚,烟草中含有大量的尼古丁,吸烟被公认为是对人体有害的。但是,国际上虽屡屡提倡“禁烟”却终不能奏效,这显然是1个难以调和的矛盾。我们可以设想,将遍地丛生、取之容易的苣卖菜经过加工掺人烟草之中或直接使吸烟者服之,这样可减少烟草中的尼古丁对人体的毒害,因此这具有十分重要和广泛的意义。本文以下所述,是对这1课题在蛇、沙蜥、白鼠3种动物身上所进行试验的记录摘要。2、实验材料及实验过程L试验材料(1)黑眉锦蛇:又名菜花蛇。爬行纲、游蛇科。捕捉于包头西部。(2)沙蜥:又名蟾头蜥,爬行纲、鬣蜥科。包头地区田野均有。(3)小白鼠:动物室饲养。(4)烟积油;由烟头中捅出的膏状物。(5)苣卖菜乳汁:采于包头郊外,由其茎内挤出。(6)蒸馏水。2.实验过程试验1:验证尼古丁致蛇死亡。1990年8月20日。试验对象:蛇,体重156g,体长0.65m,试验前无病态。试验过程及现象:将烟积油0.004g用蒸馏水溶解,用无针头注射器注入蛇口。初注入烟积油后,尚能爬行1.5m,经31秒钟后,药物发生作用。观察其反应:身躯自尾部开始痉挛,随后颈僵直,瞳孔扩散失去光泽,口中有唾液流出,尔后全身僵硬,口垂于地,1分钟后死亡。试验2:观察苣卖菜解尼古丁之毒的效果。1990年8月20日。试验对象:蛇,体重178g,体长0.71m,试验前无病态。试验过程及现象:先将烟积油0.004g用试验1方法注入蛇口。经48秒后药物发生作用,蛇反应与试验1基本相同。等蛇休克之后,立即用解剖刀把撬开蛇口,将鲜苣卖菜乳汁0.Olg抹于蛇喉部,用蒸馏水送服。观察其反应:4分钟后,蛇的尾部先恢复柔软。5分30秒后,手触动蛇体时,蛇有知觉。7分钟后,蛇头可抬起,瞳孔逐渐恢复光泽,在其眼前摆动手臂,有闪躲现象。8分钟后,蛇颈部恢复柔软。10分12秒后,蛇头昂起,可蠕动。蛇的恢复过程,恰好与中毒时过程相反。试验3:观察烟积油与苣卖菜乳汁混合后在动物身上的反应。1990年8月22日。实验对象:蛇,体重203g,体长0.8m。药品用量:烟积油水溶剂0.004g,苣卖菜乳汁0.Olg,混合。过程及现象:将调好后的混和物2ml注入蛇口,经40秒钟后,蛇略有失常反应,表现为爬行缓慢或停爬,力弱,但无较大反应。随时间的延长,蛇逐渐恢复正常。试验后,可继续饲养。试验4:苣卖菜乳汁胶质的效力。1991年1月20日试验对象:同试验3。药品及用量:烟积油0.004g制成水溶液,苣卖菜乳块0.008g制成溶剂(需放入瓷坩埚中加温,待2小时后方能溶解)。过程及现象:用试验1的方法将烟积油溶液注入蛇口内,观察其反应,与试验 1现象基本相同。再及时将乳块溶液注入蛇口,经20分钟后,触动蛇体,有知觉。 33分钟后,在蛇头前摆动手臂,蛇有闪躲现象,身躯由僵变软,头部抬起。经45分钟后,可爬行。试验5:观察沙蜥对尼古丁的反应。1990年8月23日。试验药品:同试验1。过程及现象:用小木片撬开沙蜥口,将烟积油0.002g(膏状)抹入其口中。经5秒钟后,尾及四肢痉挛,头低下,口张合,后腿挺伸3~4次,40秒后死亡。试验6:观察尼古丁与苣卖菜乳汁混合,在沙蜥身上的反应。药品及用量:烟积油0.001g(膏状),与鲜苣卖菜乳汁0.002g调和,不需加水。过程及现象:将混合后的药品用小木片抹入沙蜥口内。其现象:仍能快速爬行,不发生中毒现象。试验7:观察白鼠对尼古丁的反应。1991年1月23日。试验手段:口服及肌肉注射。过程及现象:先将烟积油O.002g溶解后,用无针头注射器注入鼠口,经20分钟后无反应。再将烟积油0.002e溶解后过滤,取lml进行肌肉注射,立刻发生痉挛,随后死亡。试验8:观察尼古丁与苣卖菜乳汁混合,在白鼠身上的反应。1990年1月23日。试验手段:肌肉注射。过程及现象:将烟积油0.002g溶解后与0.0042苣卖菜乳块混合溶解,过滤后取lml进行肌肉注射。发现注射后白鼠仍能跑动,后腿略拖,精神有所减弱,但不发生死亡。三、结论1.尼古丁可使沙蜥、蛇、小白鼠等小动物中毒死亡。2.尼古丁与苣卖菜乳汁混合后,具有降解尼古丁毒性的作用。3.苣卖菜乳汁可缓解尼古丁毒性。4.尼古丁毒素对哺乳动物(这是单指白鼠)用口服的方法远不如两栖动物 (这是指蛇与沙蜥)反应迅速,但用肌肉注射反应迅速。5.胶质的苣卖菜乳汁,仍能降解尼古丁毒性。[3]有研究显示,尼古丁能作用于迷走神经系统,破坏正常的胃肠活动,使幽门括约肌松弛,胆囊收缩,使碱性的胆汁易于返流入胃,以致破坏胃粘膜,并且还可促使胃酸分泌增多,抑制前列腺素合成,从而使胃粘膜粘液分泌减少。这些均可损害胃粘膜,导致胃病。[4]由此可见,苦菜既能治疗胃病又能解尼古丁毒。于是,得出1假设:胃病可能有另1引发机制,人体中含有1组内源性物质,1种与尼古丁相似,我暂且称它为尼古丁类似物,另1种与苦菜中的某1物质相似,称它为苦菜活性物质。在正常情况下,2者相互中和;若尼古丁类似物含量多,就会引发胃病。谢谢!
基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇
这个小学生研究癌症基因获得了全国的大奖后之所以会被质疑是因为很多的人觉得这个小学生“懂得太多了”,像他的这个文章很多的硕士都不一定能够写出来,但是这却出自一个小学生之手,因此网友觉得这文章不是他原创的。很多人不相信这个小学生竟然这么厉害,能够年龄如此小就拥有如此多的知识储备,所以就怀疑这个小学生可能是作弊了。
这个六年级的小学生他研究的项目是:基因突变在结直肠癌发生发展中的功能与机制,光看这个名字就显得如此的高大上。而且他的这篇文章并不是小孩子过家家,随便写一写而已,他的这篇文章写的还是比较严谨的,而且里面很多的专业内容都是正确的,很多的大学生看了之后都自叹不如。而且如此一篇高深度的文章,竟然只获得了三等奖,而并没有获得一等奖,这也让很多人觉得非常疑惑。
经过调查发现这名六年级的小学生,他的父母都是云南昆明肿瘤学的研究员,他们两个人关于这方面的知识还是非常丰富的,所以很多的人就质疑这篇文章是不是他的父母指导他们的孩子写的。其中大篇幅的内容,其实都是他的父母在研究时得出的结论,父母帮助孩子完成比赛,这其中可能有学术造假的嫌疑。一个孩子之前还不懂什么是基因,过了一段时间后直接写出研究癌症的报告,我们想想也觉得有点不可思议。
我觉得这个小学生肯定是受到了他父母对他的帮助,但是他自己对于这个方面应该也有一定的见解,不应该是从头到尾全部都是照着他父母的话来写的,应该也有他自己的感悟。一个小学生能够有如此上进的精神,我觉得我们应该学会去鼓励他,而并不是这个事件一出很多人就疯狂质疑他,这样一来的话也打击了孩子的自尊心和自信心。总的来说很多的人质疑这个小学生,就是因为他们觉得这个小学生懂的东西太多了,写出的文章水平有点太高了,所以他们有点不相信。
一、癌症的分子检测二、主要的分子检测新技术三、癌症的基因治疗四、基因载体五、癌症基因治疗的展望及存在的问题六、与基因治疗有关的某些社会问题 第一章 癌基因和肿瘤抑制基因(抗癌基因) 一、癌基因二、肿瘤抑制基因第二章 细胞周期一、g1期分子的调节二、s期的基因调节三、g2/m期基因调节四、m期的分子调节机制五、细胞外信号的作用六、细胞周期的关卡调节七、细胞周期和癌八、细胞周期异常和肿瘤的治疗问题第三章 细胞信号转导与癌症一、细胞信号转导的类型及转导通路的一般特征二、信号转导的生物学效应三、细胞内几条主要的信号转导途径与癌症四、细胞内其他一些重要的信号转导途径与癌症五、信号转导与癌症的治疗第四章 细胞凋亡消长的分子生物学与肿瘤 一、细胞凋亡的概念二、参与细胞凋亡的核心分子三、细胞凋亡的信号转导四、细胞凋亡调节因子与肿瘤发生第五章 端粒、端粒酶和肿瘤一、发现的历史二、端粒三、端粒酶四、端粒酶活性检测方法五、端粒酶结构蛋白质及端粒结合蛋白质六、端粒、端粒酶与肿瘤七、展望第六章 癌细胞的侵袭和转移一、肿瘤浸润和转移的基本概念二、肿瘤浸润转移过程的分子机制 第二篇 癌症的基因治疗总论第七章 癌症的分子靶治疗一、小分子化合物二、蛋白质类药物三、p53抗癌基因第八章 治疗基因的导入和载体的应用 一、非病毒性策略二、病毒性策略第九章 反义技术和核酶技术一、反义技术二、核酶技术第十章 rna干扰技术一、rna干扰的原理二、rna干扰的生物功能三、哺乳类中的rna干扰四、rna干扰的实验技术五、rna干扰在生物医学和功能基因组中的应用第十一章 癌症导向分子化疗一、癌症导向分子化疗的分类二、癌症导向分子化疗的常见策略三、肿瘤导向分子化疗药物载体的选择第十二章 致融性抗肿瘤单纯疱
基因工程的利弊基因工程的利与弊说【摘要与前言】基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?【正文】观点:辨证的看待基因工程的利与弊一.基因工程可用来筛检及治疗遗传疾病。遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。二.基因工程配合生殖科技——全人类的震撼基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。三.基因治疗法——遗传病人的福音目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。四.农林渔牧的应用——生态环保的顾虑目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。五.基因转殖动物——爱护动物人士的关切基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)【结语】不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。
1] Wang XW,Yuan JH,Zhang RG,et effect of alpha?fetoprotein antisense phosphorothioate oligodeoxyribonuc?leotides in vitro and in mice[J].World J Gastroenterol,2001,7(3):345-351.[2] 王季,乔世峰.反义IGF?I寡核苷酸转染抑制人肝癌细胞生长的实验观察[J].中国肿瘤临床,2005,32(2):115-116.[3] Qiao J,Doubrovin M,Sauter BV,et transcriptional targeting of suicide gene therapy[J].Gene Ther,2002,9(3):168-175.[4] Won YS,Lee retardation of hepatocarcinoma cells by specific replacement of alpha?fetoprotein RNA[J].J Biotechnol,2007,129(4):614-619.[5] 薛刚, 程莹, 曹永宽,等.IFNγ基因修饰的树突状细胞在肝癌免疫治疗中的应用[J].世界华人消化杂志,2008,16(25):2820-2825.[6] Nair S,Boczkowski D,Moeller B,et between tUnlor im?nmnotherapy and antiangiogenic therapy[J].Blood,2003,102(3):964-971.[7] 穆红,王玉亮,刘蓉.野生型p53基因在人肝癌细胞的表达及诱导其凋亡[J].细胞与分子免疫学杂志,2006,22 (6):758-759.[8] Douglas JT. Cancer gene therapy [J].Technol Cancer Res TREAT,2003,2(1) :51-64.[9] 李华,王欣璐,杨扬,等.RNAi靶向人端粒酶逆转录酶对人肝癌细胞的生长抑制作用[J].南方医科大学学报,2008,28(8):1323-1326.[10] 罗渝昆,张东山,马爱敏,等.超声微气泡介导cy5ODN 转染大鼠肾的研究[J].中华超声影像学杂志,2007,16(6):527-529.[11] 黄嘉凌,刘燕艳,方壮伟,等.HSV?TK/CD基因联合IL?12基因体内治疗肝癌[J].肿瘤,2004,24(5):467-469.[12] 冯嘉瑜,张艮甫.器官移植中的基因治疗[J].局解手术学杂志,2004,13(2):124-125.[13] Azuma H,Tomita S,Kaneda Y,et of NK kappaB?decoy oligodeoxynucletides using efficient ultrasound mediated gene transfer into donor kidneys prolonged survival of renal allografts[J].Gene Ther,2003,10(5):415-425.[14] 温贤浩,徐酉华.Survivin?肿瘤基因治疗的新靶点[J].局解手术学杂志,2004,13(4):277-279.[15] Miller DL,Don C,Song transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro[J].Ultrasound Med Biol,2003,29(4):601-607.
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文
你好!晋中昕儿很荣幸可以回答您的问题!据有关资料和民间经验显示,苦菜具有治疗胃病的良好效果,并且有相关实验表明,苦菜还能解尼古丁毒,由此推断,苦菜中可能含有1中物质能与尼古丁发生中和。最后得出1种假设:人体中含有1组内源性物质,1种与尼古丁相似,另1种与苦菜中的某1物质相似。在正常情况下,2者相互中和;若尼古丁类似物含量多,就会引发胃病。关键词:苦菜,尼古丁,内源性物质,胃病正文:家乡苦菜很多,有人用它治疗胃病,效果很好,于是产生了兴趣,通过资料对其研究,发现,它确实有许多值得关注的地方。论文 毕业论文网苦菜为菊科植物苦苣菜Sonchuso1eraceusL.山苦荬Ix-erischinsnsis(Thunb.)Nakai.抱茎苦荬菜(Houtt.)Stebb.的嫩叶,又名苦荬、苦马菜。1—2年生草本植物。苦菜每百克嫩叶含水分91克,蛋白质克,脂肪克,碳水化合物4克,钙120毫克,磷52毫克,胡萝卜素毫克,维生素毫克,维生素C12毫克等。苦菜性味苦寒,具有清热解毒、凉血的功效。用于治痢疾、黄疸、血淋、痔瘘、疗肿等。《滇南本草》载“凉血热,寒胃,发肚腹中请积,利水便。”《本草纲目》载“治血淋痔疹”。脾胃虚寒者忌食。[1]苦菜治疗胃病的事实已经被许多人所证实,且效果良好;苦菜能提高口味,健胃,春天吃苦菜的话能健胃提高消化功能,还能抗暑。[2]近年来有关专家又发现苦菜中含有与尼古丁中合的成份,所以苦菜茶又是吸烟或被动吸烟者的最佳饮品。这里举1例:六十年代初,有人常到野外捉蜥蜴充饥,祖父告诉他,苦菜根里的白汁能解毒。1次此人捉了只蜥蜴,从祖父长烟管里抠出点烟油子,涂在蜥蜴嘴里,它很快就昏死了过去,再用苦菜根中的白汁抹在它嘴里,蜥蜴转眼间便复活了。由此看来,多吃苦菜、多饮苦菜茶对身体健康是十分有益的。有人曾对苦菜解尼古丁之毒做过如下实验:1、苣卖菜简述及问题的提出苣卖菜(geerusderiovlolo)又名取卖菜、苦菜,菊科,多年生草本,叶基生包茎,下部带紫红色,黄色舌状花,我国各地普遍野生。其茎、叶及主根中均有白色乳汁,汁与空气接触后由白色变为深褐色,时间1长还会凝成胶质体,幼苗可食。其药用功能早巳载入我国中医学宝库。药名败酱,全草入药,主要成分含香豆素、甾帖类,主治肠痛、疮疖肿痛、肠炎、痢疾、带下产后淤血、痔疮等疾病,可解蚊、虫咬毒,具有清热解毒、消肿排脓祛淤等功能。根据我们在几种动物体进行试验的结果,苣卖菜还可以解尼古丁之毒。我们认为,这1课题值得研究和探讨。道理很清楚,烟草中含有大量的尼古丁,吸烟被公认为是对人体有害的。但是,国际上虽屡屡提倡“禁烟”却终不能奏效,这显然是1个难以调和的矛盾。我们可以设想,将遍地丛生、取之容易的苣卖菜经过加工掺人烟草之中或直接使吸烟者服之,这样可减少烟草中的尼古丁对人体的毒害,因此这具有十分重要和广泛的意义。本文以下所述,是对这1课题在蛇、沙蜥、白鼠3种动物身上所进行试验的记录摘要。2、实验材料及实验过程L试验材料(1)黑眉锦蛇:又名菜花蛇。爬行纲、游蛇科。捕捉于包头西部。(2)沙蜥:又名蟾头蜥,爬行纲、鬣蜥科。包头地区田野均有。(3)小白鼠:动物室饲养。(4)烟积油;由烟头中捅出的膏状物。(5)苣卖菜乳汁:采于包头郊外,由其茎内挤出。(6)蒸馏水。2.实验过程试验1:验证尼古丁致蛇死亡。1990年8月20日。试验对象:蛇,体重156g,体长0.65m,试验前无病态。试验过程及现象:将烟积油0.004g用蒸馏水溶解,用无针头注射器注入蛇口。初注入烟积油后,尚能爬行1.5m,经31秒钟后,药物发生作用。观察其反应:身躯自尾部开始痉挛,随后颈僵直,瞳孔扩散失去光泽,口中有唾液流出,尔后全身僵硬,口垂于地,1分钟后死亡。试验2:观察苣卖菜解尼古丁之毒的效果。1990年8月20日。试验对象:蛇,体重178g,体长0.71m,试验前无病态。试验过程及现象:先将烟积油0.004g用试验1方法注入蛇口。经48秒后药物发生作用,蛇反应与试验1基本相同。等蛇休克之后,立即用解剖刀把撬开蛇口,将鲜苣卖菜乳汁0.Olg抹于蛇喉部,用蒸馏水送服。观察其反应:4分钟后,蛇的尾部先恢复柔软。5分30秒后,手触动蛇体时,蛇有知觉。7分钟后,蛇头可抬起,瞳孔逐渐恢复光泽,在其眼前摆动手臂,有闪躲现象。8分钟后,蛇颈部恢复柔软。10分12秒后,蛇头昂起,可蠕动。蛇的恢复过程,恰好与中毒时过程相反。试验3:观察烟积油与苣卖菜乳汁混合后在动物身上的反应。1990年8月22日。实验对象:蛇,体重203g,体长0.8m。药品用量:烟积油水溶剂0.004g,苣卖菜乳汁0.Olg,混合。过程及现象:将调好后的混和物2ml注入蛇口,经40秒钟后,蛇略有失常反应,表现为爬行缓慢或停爬,力弱,但无较大反应。随时间的延长,蛇逐渐恢复正常。试验后,可继续饲养。试验4:苣卖菜乳汁胶质的效力。1991年1月20日试验对象:同试验3。药品及用量:烟积油0.004g制成水溶液,苣卖菜乳块0.008g制成溶剂(需放入瓷坩埚中加温,待2小时后方能溶解)。过程及现象:用试验1的方法将烟积油溶液注入蛇口内,观察其反应,与试验 1现象基本相同。再及时将乳块溶液注入蛇口,经20分钟后,触动蛇体,有知觉。 33分钟后,在蛇头前摆动手臂,蛇有闪躲现象,身躯由僵变软,头部抬起。经45分钟后,可爬行。试验5:观察沙蜥对尼古丁的反应。1990年8月23日。试验药品:同试验1。过程及现象:用小木片撬开沙蜥口,将烟积油0.002g(膏状)抹入其口中。经5秒钟后,尾及四肢痉挛,头低下,口张合,后腿挺伸3~4次,40秒后死亡。试验6:观察尼古丁与苣卖菜乳汁混合,在沙蜥身上的反应。药品及用量:烟积油0.001g(膏状),与鲜苣卖菜乳汁0.002g调和,不需加水。过程及现象:将混合后的药品用小木片抹入沙蜥口内。其现象:仍能快速爬行,不发生中毒现象。试验7:观察白鼠对尼古丁的反应。1991年1月23日。试验手段:口服及肌肉注射。过程及现象:先将烟积油O.002g溶解后,用无针头注射器注入鼠口,经20分钟后无反应。再将烟积油0.002e溶解后过滤,取lml进行肌肉注射,立刻发生痉挛,随后死亡。试验8:观察尼古丁与苣卖菜乳汁混合,在白鼠身上的反应。1990年1月23日。试验手段:肌肉注射。过程及现象:将烟积油0.002g溶解后与0.0042苣卖菜乳块混合溶解,过滤后取lml进行肌肉注射。发现注射后白鼠仍能跑动,后腿略拖,精神有所减弱,但不发生死亡。三、结论1.尼古丁可使沙蜥、蛇、小白鼠等小动物中毒死亡。2.尼古丁与苣卖菜乳汁混合后,具有降解尼古丁毒性的作用。3.苣卖菜乳汁可缓解尼古丁毒性。4.尼古丁毒素对哺乳动物(这是单指白鼠)用口服的方法远不如两栖动物 (这是指蛇与沙蜥)反应迅速,但用肌肉注射反应迅速。5.胶质的苣卖菜乳汁,仍能降解尼古丁毒性。[3]有研究显示,尼古丁能作用于迷走神经系统,破坏正常的胃肠活动,使幽门括约肌松弛,胆囊收缩,使碱性的胆汁易于返流入胃,以致破坏胃粘膜,并且还可促使胃酸分泌增多,抑制前列腺素合成,从而使胃粘膜粘液分泌减少。这些均可损害胃粘膜,导致胃病。[4]由此可见,苦菜既能治疗胃病又能解尼古丁毒。于是,得出1假设:胃病可能有另1引发机制,人体中含有1组内源性物质,1种与尼古丁相似,我暂且称它为尼古丁类似物,另1种与苦菜中的某1物质相似,称它为苦菜活性物质。在正常情况下,2者相互中和;若尼古丁类似物含量多,就会引发胃病。谢谢!
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文
基因工程的利弊基因工程的利与弊说【摘要与前言】基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?【正文】观点:辨证的看待基因工程的利与弊一.基因工程可用来筛检及治疗遗传疾病。遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。二.基因工程配合生殖科技——全人类的震撼基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。三.基因治疗法——遗传病人的福音目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。四.农林渔牧的应用——生态环保的顾虑目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。五.基因转殖动物——爱护动物人士的关切基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)【结语】不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。
p53基因,参与调控细胞周期、DNA修复、细胞凋亡以及细胞代谢通路等。是第一个被发现肿瘤抑制因子,也是最著名的抑癌基因,人类肿瘤细胞中最常见的突变基因,超过一半的癌症中发现存在p53基因突变。癌细胞通常会表现出代谢过程的增加以满足其快速分裂增殖的能量需求。肿瘤细胞中代谢的增加会带来大量的副产物——氨,然而,目前还不清楚尚肿瘤细胞如何处理过量的氨以及氨积累可能导致的结果。 2019年3月6日,清华大学生命科学学院江鹏研究员作为通讯作者在 Nature 杂志发表题为:p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis 的研究论文。 该研究首次将p53与尿素循环和氨代谢联系起来,并进一步揭示了氨在控制多胺生物合成和细胞增殖中的作用。发现并证实著名抑癌基因 p53 通过抑制尿素循环来调节氨代谢,从而抑制肿瘤的生长。 尿素循环(urea cycle)用于消除由人体内蛋白质分解或含氮化合物合成产生的过量氮和氨。尿素循环酶还操纵某些类型肿瘤中的核苷酸代谢。 三种尿素循环基因CPS1、OTC和ARG1的mRNA的表达在几种p53缺失的肿瘤细胞系中相对于其野生型对照相比表达增加,在HEK293细胞过表达p53,会抑制这三个基因的mRNA表达。 通过Luciferase报告基因实验,证实p53基因通过直接的靶向作用关系抑制CPS1、OTC和ARG1这三个基因的表达。 ODC是多胺合成过程中的限速酶,p53基因通过抑制尿素循环导致氨积累,氨积累会导致ODC的mRNA翻译显著降低,从而降低多胺合成速率,抑制肿瘤细胞的增殖和生长。 通过控制尿素循环的一半以上步骤,p53对氨代谢的强烈监视使肿瘤受到抑制,这也表明尿素循环和氨代谢在肿瘤发生中的重要性及其作为治疗靶标的潜力。 该研究首次将p53与尿素循环和氨代谢联系起来,并进一步揭示了氨在控制多胺生物合成和细胞增殖中的作用,发现并证实著名抑癌基因 p53 通过抑制尿素循环来调节氨代谢,从而抑制肿瘤的生长。
在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。
论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”
他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。
Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”
论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”
这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。
Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”
这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。
随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。
Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。
下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。
通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。
通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”
Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”
这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。
Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”
Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。
他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 )
参考资料: Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:. D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:.