首页

医学论文

首页 医学论文 问题

分子生药学论文英文论文

发布时间:

分子生药学论文英文

英语翻译教学在高校英语教学中起着重要作用,它直接影响了学生的英语使用能力。尤其在经济全球化不断发展的当今社会,加强英语翻译教学不仅关系着大学生的就业前景,更与我国经济发展密切相连。下面是我为大家整理的英语翻译论文,供大家参考。

英语翻译论文 范文 一:中西方 文化 在英语翻译方面的差异性

一、中西方文化在英语翻译方面的差异性

(一)地理环境因素

“一方山水养一方人”,不同的地域和环境必然造就不同的民族文化。中国是一个幅员辽阔、地大物博、物产丰富的农业大国,这就使我国形成了一种典型的农耕文化。中国人注重人与自然、人与人之间的和谐与统一,故在许多 成语 中都与土地有关,如“土豪劣绅”“、土生土长”和“土崩瓦解”等。而英国则是一个典型的岛国,其四面被海水环绕,故其航海技术一直处于世界领先地位,这也促使其所形成的文化中都与水或航海有一定的联系,如在比喻一个人挥霍金钱的时候,会用“Spendmoneylikewa-ter”(挥金如土)来加以描述;在形容一个人的形体单薄、虚弱的时候则用“asweakaswater”(弱不禁风)来加以描述;而在告别友人的时候则会用“haveagoodsailing”(一路顺风)来加以描述等。因此,只有掌握了中西民族文化之间的差异性,才能够正确对语句进行理解和翻译。

(二)宗教信仰因素

宗教文化也是众多文化中的一种表现形式,其也会因信仰的不同而产生一定的差异。中国的宗教门派众多,但是主要的可以分为道家、佛家和儒家这三个主要的流派。不同的教派具有不同的教义,如中国道家主张人和神仙是可以相互转化的;佛教则主张佛祖则是至高无上的神,其法力无边,这也可以从我国古代语言中明显看出。汉语中有“天命不可违”、“借花献佛”和“不看僧面看佛面”等的语言表达。而西方则主要以基督教为主,他们只承认上帝是万事万物的主宰,其无所不能,这在西方语言中也可以明显的看出来。如“Manproposes,Goddisposes”(谋事在人,成事在天)、“GodiswhereHewas”(上帝无所不在)和“Heavenisaboveall”(上帝高于一切)等。因此,为了达到翻译忠实原意的目的,我们必须要充分了解中西宗教文化的差异性。

二、提高高校英语翻译质量的策略

(一)导入异国文化

中西翻译的差异性。因此,为了提高学生对于英语翻译的认识度和理解度,教师需要在英语翻译教学的过程中为学生们导入到量的异国文化。通过将英语翻译与文化学习二者进行有机地结合来提高学生们英语翻译的水平。但是特别需要注意一点就是,教师在导入异国文化的过程中要始终本着由易到难、由浅入深的原则。此外,教师除了要为学生们普及一些西方文化知识外,还需要为学生们普及一些西方文化习俗的来源。例如,英语中有“raincatsanddogs”的习语,这句话用汉语可以表述为“倾盆大雨”,但是如果按照直白的翻译就会理解为“下猫跟狗”,这样就明显偏离了翻译的本意。这句习语主要来源于北欧的神话 传说 ,传说猫跟狗对于风和雨等天气具有很强的预测能力。又如“asstrongasahorse”(壮如牛),但是如果单纯的按照意思来理解则成了“壮如马”了等。如果学生对于这个文化背景不了解,则会出现上述可笑的误译现象。

(二)介绍英汉语言结构上的差异性

英语结构区别于汉语结构,其重视主题句和主体结构的构成以及 句子 结构连接过渡词的作用,并且侧重用介词和连词来表示句子和词组之间的逻辑关系,这种现象在汉语中则很少用或几乎不用。另外,英语表述中特别忌讳重复,如果出现重复的问题,通常用省略、替换或代词的形式来加以表示,但是我们汉语中常用重复来表示强调。

(三)讲解一些常用的翻译技巧

在学生掌握了上述英语翻译的基本知识之后,教师需要为学生讲解一些常用的翻译技巧,从而让学生们学会如何通过删减或增加词语来使语句变得更加通顺。常用的翻译技巧主要包括词类转换、增删词语以及拆分语句等手段。首先,词类转换作为一种有效的翻译手段,其主要是将那些由动词转化来的名词或具有动作意义类型的名词后接of的形式按照汉语中动宾 短语 来进行翻译即可。其次,英语和汉语之间的结构表述有所不同,只有通过增加或删减词汇才能够使意思更加忠实原文的含义。

三、结语

总之,中西文化差异性对于英语翻译具有重要的影响。为了提高学生英语翻译能力,教师必须要在教学实践中让学生充分地了解西方的文化传统,从而使学生做到“知己知彼”,然后并要在基础上教授给学生英语翻译的一些技巧,从而达到提高高校翻译教学质量的目的。

英语翻译论文范文二:生物 医学英语 翻译得体性原则

1得体性原则及在翻译中的适用性

“得体”一词在《现代汉语词典》中的释义如下:“(言语、行动等)得当;恰当;恰如其分。”其他词典的解释与此大体相类。这是一种宽泛意义上的解释。难以确切理解其内涵,不大好把握,运用起来常常带有不同程度的盲目性、随意性。从修辞学理论的高度来衡量,离规范性、科学性相距甚远。王希杰先生在《修辞学通论》中则指出:语言的“得体性指的是语言材料对语言环境的适应程度。脱离了特定的语言环境,就没有得体不得体的问题。”他说:“修辞的原则只有一条,那就是得体性原则。一切其他的原则都从属于这个原则,都是这个最高原则的派生物。这个最高原则制约着和控制着一切其他的原则。”[1]王先生的定义简洁、明确,认为得体是语用的最高原则。聂炎[2]在《得体性原则两题》一文中对语言表达如何适应语体进行了 总结 :“每一种语体一般来说都有表现自己本身特点的不同的语料和表达手段,即常常有自己的专用词语、专用句法结构和篇章结构、语言风格等等,这是该语体区别于彼语体的重要之点。言语思维主体在选词 造句 时只有同语体和谐一致,即得语体之“体”,才可能有良好的表达效果。”翻译是一种跨文化、跨语言的交际活动,翻译过程可以定义为理解原文并创造性地运用另一种语言再现原文的过程,即语言使用的过程。[3]而得体又是语用的最高原则。因此,得体性语用原则在翻译中的适用性不言而喻。翻译的语用问题,归根到底,强调的是语言信息所采取的形式,必须由使用该语言的环境来决定,其根本是语言表达切合语境的得体性。[4]

2生物医学英语的特征及得体性翻译原则的具体内涵

从广义上来说,得体性语用原则适用于一切译作,但是,根据原作的文体不同,在具体要求上就各有侧重。生物医学英语属于科技文体的范畴。典型的科技英语是“专家与专家”交流的涉及学科的研究和发展的书面性英语。[5]其功能主要是述说事理、描写现象、推导公式、论证规律,其特点是结构严谨、逻辑严密、行文规范、用词准确,技术术语正确,修辞手段较少。[6]针对这些特点,科技英语翻译中的得体表现为忠实和通顺。所谓忠实,就是要完整地、准确地表达原作的思想内容,同时还需保持原文风格。这是对科技翻译的首要的、也是最起码的要求。原作的内容和风格是客观存在的。译者的任务,就是要把这种客观存在原封不动地传达给非原文读者。翻译虽然是语言的一种再创作,但毕竟和纯粹的创作有着本质的区别。译者必须忠实于原作,决不可自作主张,对原作进行随意的篡改、增删。所谓通顺,对科技翻译来说,虽然不像翻译文学小说那样要求雅致优美、姿态横生,也不像翻译诗歌那样要求抑扬顿挫、押韵合辙,但至少应保证译文语言符合汉语的语言规范和修辞习惯,文从字顺、明白流畅,而不能生造一些不伦不类的词句,或对原作拘泥太过,以致译文出现文理不通、结构混乱和拖泥带水的现象。在翻译实践中,若“忠实”和“通顺”二者不可兼得的情况下首先要考虑前者,即忠实、准确、规范地传达原作的意思,因为科学的灵魂是“真”,科技翻译的灵魂是“准确”。在医学文献翻译中,一字之差就可能断送病人性命;在工程技术翻译中,一个数据之误可能导致重大的技术事故。因此,“忠实”是科技翻译的根本和前提,而“通顺”是实施科技翻译达到完美的一种手段和途径。[7]

3得体性翻译原则在生物医学英语翻译中的具体运用

要实现生物医学英语翻译的篇章译文得体,就必须在词、词组、句子、段落等各语言平面上对译入语可能有的几个同义而结构不尽相同的语言形式精心选择,选择除了涉及语言结构因素(如词性、词语搭配、上下文)之外,还与文体有关。选择的目的是使译文得体,得语言和文体之体。以下通过辨析不同译文以具体说明如何实现生物医学英语各语言平面翻译的得体。

词的得体

表达规范

《现代汉语》指出:科技语体讲究论证的逻辑性,要求语言规范。[8]例1Electroporationisusedtomakesmall,temporaryholesinthemembranesoDNAcanpassin.译1:电穿孔用来在细胞膜上形成小的獉獉、暂时的孔洞獉獉獉獉獉从而使DNA通过。译2:电穿孔用来在细胞膜上形成瞬时微獉獉獉孔獉从而使DNA通过。例2Thesefindingssuggestthatoralim-munemodulationmayrepresentanattractivether-apeuticapproachtoatherosclerosis.译1:这些结果表明口服免疫调节剂代表了一种诱人的獉獉獉治疗动脉粥样硬化的新 方法 。译2:这些结果表明口服免疫调节剂代表了一种引人注目的獉獉獉獉獉治疗动脉粥样硬化的新方法。以上两例中的“小的、暂时的孔洞”以及“诱人的”用语不正式,且读来疲软。而译2中的“瞬时微孔”及“引人注目的”用语平稳、凝重、冷穆,符合科技英语的特征。

用词准确

例3PolymeraseChainReaction(PCR)isamolecularbiologicalmethodforamplifyingDNAwithoutusingalivingorganism,.译1:聚合酶链式反应是一种无需在活体(如大肠杆菌或酵母)内扩大獉獉DNA的分子生物学方法。译2:聚合酶链式反应是一种无需在活体(如大肠杆菌或酵母)内扩增獉獉DNA的分子生物学方法。译文1把amplify译成“扩大”,但根据生物学知识判断,这里的amplify是“creatingmultiplecopies(产生多个克隆)”的意思,所以译成“扩增”更准确。

词组得体

精炼、符合汉语表达习惯

例4Theabilityofmonoclonalantibody(mAb),treatmentwithmAba-lonehasonlyachievedverylimitedsuccessintheclinic.译1:体外实验中单克隆抗体(mAb)特异定位于肿瘤组织的能力为癌症治疗提供了一种引人注目的治疗方法。然而单独使用mAb治疗在临床上取得了非常有限的成功獉獉獉獉獉獉獉獉獉獉。译2:体外实验中单克隆抗体(mAb)特异定位于肿瘤组织的能力为癌症治疗提供了一种引人注目的治疗方法。然而单独使用mAb治疗在临床上收效甚微獉獉獉獉。例5Asimmunologybecomesbettercharac-terized,immunomodulatorhasprovenasoneofthemostprevalentareasinthedevelopmentofnewpharmaceuticals.译1:随着免疫学变得更富特征獉獉獉獉獉獉,免疫调节剂已成为药学研究中的一个最流行的领域獉獉獉獉獉獉。译2:随着免疫学的进一步发展獉獉獉獉獉,免疫调节剂已成为药学研究中的一个 热点 獉獉。以上两例中译2优于译1之处在于:译2表达正式规范有力,且更符合汉语习惯。由于英汉词组的构成和功能差异较大,所以总的要求是在“信”的前提下,既要充分表达原意,又要符合译入语语言形式上和修辞的和谐。科技英语中存在大量惯用和非惯用的四字词组,如asshowninfigure(如图所示),withoutlossoftime(不失时机),convertwastesintousefulmaterials(废物利用)等。合理使用这些四字词组,能起到精确紧凑,简洁明晰的效果,为译文增色不少。

专业规范

例6Thespleenmayaddbloodtothegen-eralcirculationtomakeupforwhathasbeenlostinthebody.译1:脾脏能给总循环獉獉獉增加血液,以补偿獉獉獉身体的损失獉獉獉獉獉。译2:脾脏能给周身循环獉獉獉獉增加血液,以补獉獉偿身体所失去的血獉獉獉獉獉獉獉獉。在医学中,“总循环”不如“周身循环”专业规范,而且“补偿身体的损失”过于笼统,所指不明。所以译2更得体。

句子得体

句子是语言平面中上下运转的轴心,也是翻译过程的主要着力点。句子同义手段的选择应该做到对应题旨要求,适应行文递接,切合语体特点以及依从声韵协调。[9]具体到生物医学英语的句子翻译,应该做到:

体现信息中心

每一句话、每一句群和每一语段都有一个最核心最关键的内容或意旨需要得到强调突出,以利于接受主体准确地把握其语意焦点,了解其着意传输的信息,此语意焦点成为信息中心。[9]应尽量把原语的信息中心译成汉语的信息中心,使两者相对应。例7Nucleicacid,originallyisolatedbyJohannMiescherin1871,wasidentifiedasaprimeconstituentofchromosomesthroughtheuseofthered-stainingmethoddevelopedbyFeulgenintheearly1900s.译1:核酸最初是由JohannMiescher在1871年分离成功,并被证实为是染色体组最基本的组成,这是由Feulgen在20世纪初通过使用红染色方法证实的。译2:核酸最初是由JohannMiescher在1871年分离成功,并在20世纪初由Feulgen通过使用红染色方法证实为染色体组最基本的组成。译1采取直译的方法,虽然把原文的意思表述清楚了,但是把信息中心置于句中,未予突出。而原文中的isolated和identified为本句的信息中心,译成“分离”和“证实”。译2通过语序颠倒使信息中心突出,自然流畅,符合汉语表达习惯。英汉表达方式不同,许多汉语句子往往把信息中心置于句尾,来突出重点;而多数英语句子则经常将信息中心置于句首,以突出主题。这就形成了“信息中心首位”(beginningfocus),其他信息后置的句式结构。汉译英时要注意把英语句法结构的这个规律运用到翻译中去。而出于汉语表达的需要,译者要反复推敲,甚至可以跳出原文的框框,合理使用翻译技巧,对原文句子成分、结构形式进行必要的调整,按照汉语的习惯组织译文。

体现逻辑关系

例8Lamivudine(Epivir-HBV)isapotentantiviralagentwithminimalimmunemodulatorca-pacity.译1:拉米夫定是有效的抗病毒药物,有獉着最低獉獉獉的免疫调节能力。译2:拉米夫定是有效的抗病毒药物,却獉很少有獉獉獉免疫调节能力。译1中没有反映前后两句内含的转折关系,读来有句子堆砌之感,而译2通过“却”一词使语段内含的转折关系得以彰显。

语段得体

语段是比句子高一级的语法单位,通常是由两个或两个以上的句子构成的语义整体。衔接是语段的重要特征,衔接的优劣,关系到话语题旨或信息是否被接受者理解和接受[10],译文若不能正确反映原文中的衔接关系,就反映不出生物医学英语的逻辑性和条理性。例9ThebiosynthesisofRNA,calledtran-scription,proceedsinmuchthesamefashionasthereplicationofDNAandalsofollowsthebasepairingprinciple.(5)Again,asectionofDNAdoublehelixisuncoiledandonlyoneoftheDNAstrandsservesasatemplateforRNApolymeraseenzymetoguidethesynthesisofRNA.(6)Afterthesynthesisiscomplete,theRNAseparatesfromtheDNAandtheDNArecoilsintoitshelix.译1:RNA的生物合成,也称为转录,以獉和獉DNA复制的相同的模式进行獉獉獉獉獉獉獉獉獉獉,同样也遵循碱基 配对 原理。DNA双螺旋的一段解螺旋,只有一条链作为RNA聚合酶引导RNA合成的模板。在合成完成后,RNA从DNA上分离,DNA再次形成双螺旋结构。译2:RNA的生物合成,也称为转录,和獉DNA复制的模式大致相同獉獉獉獉獉獉獉獉獉,同样也遵循碱基配对原理。同上所述獉獉獉獉,首先獉獉,DNA双螺旋的一段解螺旋,其中一条链作为RNA聚合酶引导RNA合成的模板。在合成完成后,RNA从DNA上分离,同时獉獉,DNA重新形成双螺旋结构。译2通过许多连接词(如同上所述、首先、同时)清晰流畅地讲述了DNA转录的过程,较之译1更富有条理性和整体感。

4结束语

生物医学英语翻译与文学翻译在语言的运用上,在修辞手段的选择上,是有区别的。文学作品个人风格明显,感情色彩较强,翻译时多注重形象思维,讲究语言上的形象和表达上的生动;而生物医学英语个人风格较少,感情色彩罕见,翻译上注重 逻辑思维 ,讲究语言上的规范和表达上的准确,在选择译文语言时,译者的游刃余地是不大的。得体是语用的最高原则,但在不同文体中侧重不同,生物医学英语翻译的得体性表现为忠实于源语的内容和风格,同时符合汉语的表达习惯。同时生物医学英语翻译也同 其它 文体的翻译一样,是一种既具艺术性,又具创造性的艰苦的脑力劳动。它要求创造性地运用中外文两种语言知识和专业知识。而要达到这一点,只能靠大量的实践和不断的探索,别无捷径可走。

英语翻译论文范文相关 文章 :

1. 商务英语专业论文范文

2. 大专商务英语论文范文

3. 科技英语论文范文:中国地名英译的注意事项

4. 新闻词汇翻译方法研究论文

5. 初中英语教学论文

6. 有关计算机英语论文

当英语论文,或其他重要的英文文书的初稿撰写完成后,在提交给相关读者阅读之前,必须要经过润色才比较保险。找北京译顶科技,性价比高,我就是在那边做的。你可以加速去知道了解下

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

Oral Administration 口服给药 For oral administration, the most common route, absorption refers to the transport of drugs across membranes of the epithelial cells in the GI tract. Absorption after oral administration is confounded by differences in luminal pH along the GI tract, surface area per luminal volume, blood perfusion, the presence of bile and mucus, and the nature of epithelial membranes. Acids are absorbed faster in the intestine than in the stomach, apparently contradicting the hypothesis that un-ionized drug more readily crosses membranes. However, the apparent contradiction is explained by the larger surface area and greater permeability of the membranes in the small intestine. 口服是最常用的给药途径,其吸收涉及药物通过胃肠道上皮细胞膜的转运。由于给药时相关环境条件的不同,如胃肠道管腔内pH及单位腔道容积的表面积,组织血流灌注情况,胆汁和粘液的存在以及上皮细胞膜的性质等,口服给药的吸收也有差异。酸性药物在肠中的吸收较胃中快,这显然与非解离药物更易透过细胞膜这一假设相矛盾。然而,这种明显的矛盾却可以从小肠具有很大的表面积和小肠细胞膜具有较大的通透性中得到答案。 The oral mucosa has a thin epithelium and a rich vascularity that favors absorption, but contact is usually too brief, even for drugs in solution, for appreciable absorption to occur. A drug placed between the gums and cheek (buccal administration) or under the tongue (sublingual administration) is retained longer so that absorption is more complete. 口腔粘膜上皮很薄,血管丰富,有利于药物吸收。但是,接触的时间太短暂,即使是溶液剂也来不及等到明显的吸收发生。把一种药物置于齿龈和面颊之间(颊部给药)或置于舌下(舌下给药)则可保留较长时间,使吸收更加完全。 The stomach has a relatively large epithelial surface, but because it has a thick mucous layer and the time that the drug remains there is usually relatively short, absorption is limited. Absorption of virtually all drugs is faster from the small intestine than from the stomach. Therefore, gastric emptying is the rate-limiting step. Food, especially fatty foods, slows gastric emptying (and the rate of drug absorption), explaining why some drugs should be taken on an empty stomach when a rapid onset of action is desired. Food may enhance the extent of absorption for poorly soluble drugs (eg, griseofulvin), reduce it for drugs degraded in the stomach (eg, penicillin G), or have little or no effect. Drugs that affect gastric emptying (eg, parasympatholytic drugs) affect the absorption rate of other drugs. 胃具有相对大的上皮表面,但由于它有较厚的粘液层,而且药物在胃内停留的时间相对较短,吸收也较少。事实上,所有药物在小肠中的吸收速度都要比胃中快。因此,胃排空即是一限速性步骤。食物,特别是脂类食物,延缓胃排空速度(从而也延缓药物吸收速度),这也就是为何某些希望迅速奏效的药物宜空腹服用的原因。食物可增强某些溶解性差的药物(如灰黄霉素)的吸收,减少胃内降解药物(如青霉素G)的吸收,食物以裁缝折吸收或无影响,或影响甚少。影响胃排空的药物(如副交感神经阻断剂)可影响其他药物的吸收速度。 The small intestine has the largest surface area for drug absorption in the GI tract. The intraluminal pH is 4 to 5 in the duodenum but becomes progressively more alkaline, approaching 8 in the lower ileum. GI microflora may inactivate certain drugs, reducing their absorption. Decreased blood flow (eg, in shock) may lower the concentration gradient across the intestinal mucosa and decrease absorption by passive diffusion. (Decreased peripheral blood flow also alters drug distribution and metabolism.) 小肠在胃肠道中具有最大的药物吸收表面积。十二脂肠腔内pH值为4~5,管腔内pH值趋碱性逐渐增强,至回肠下部时pH接近8。胃肠道内的菌丛可使某些药物失活,降低药物的吸收。血流量的减少(如休克病人)可以降低跨肠粘膜的浓度梯度,从而减少被动扩散吸收。(外周血流减少也会改变药物的分布和代谢。 Intestinal transit time can influence drug absorption, particularly for drugs that are absorbed by active transport (eg, B vitamins), that dissolve slowly (eg, griseofulvin), or that are too polar (ie, poorly lipid-soluble) to cross membranes readily (eg, many antibiotics). For such drugs, transit may be too rapid for absorption to be complete. 肠道通过时间肠道通过时间能影响药物吸收,特别是经主动转运吸收的药物(如维生素B)、溶解缓慢的药物(如灰黄霉素),或极性太高(即脂溶性差)难以透过细胞膜的药物(如许多抗生素)。这类药物通过太快,致使吸收不全。 For controlled-release dosage forms, absorption may occur primarily in the large intestine, particularly when drug release continues for > 6 h, the time for transit to the large intestine. 对控释剂型来说,吸收主要在大肠内进行,特别是药物释放时间超过6小时,也就是药物运达大肠的时间。 Absorption from solution: A drug given orally in solution is subjected to numerous GI secretions and, to be absorbed, must survive encounters with low pH and potentially degrading enzymes. Usually, even if a drug is stable in the enteral environment, little of it remains to pass into the large intestine. Drugs with low lipophilicity (ie, low membrane permeability), such as aminoglycosides, are absorbed slowly from solution in the stomach and small intestine; for such drugs, absorption in the large intestine is expected to be even slower because the surface area is smaller. Consequently, these drugs are not candidates for controlled release. 溶液剂型的吸收药物吸收受到大量胃肠道内分泌液的影响。药物要想被吸收,就必须要在与低pH环境及潜在的降解酶的接触中生存下来。通常,即使某种药物在肠环境中很稳定,但进入大肠的仍然是极少数。低亲脂性(即膜通透性低)药物,如氨基糖苷类,经胃和小肠溶液被缓慢吸收。而在大肠中,因表面积更小,预期吸收更慢。因此,这些药物不宜制成控释剂型。 Absorption from solid forms: Most drugs are given orally as tablets or capsules primarily for convenience, economy, stability, and patient acceptance. These products must disintegrate and dissolve before absorption can occur. Disintegration greatly increases the drug's surface area in contact with GI fluids, thereby promoting drug dissolution and absorption. Disintegrants and other excipients (eg, diluents, lubricants, surfactants, binders, dispersants) are often added during manufacture to facilitate these processes. Surfactants increase the dissolution rate by increasing the wetability, solubility, and dispersibility of the drug. Disintegration of solid forms may be retarded by excessive pressure applied during the tableting procedure or by special coatings applied to protect the tablet from the digestive processes of the gut. Hydrophobic lubricants (eg, magnesium stearate) may bind to the active drug and reduce its bioavailability. 固体剂型的吸收主要是出于方便、经济、药物稳定性、及病人接受性的考虑,大多数药物都以片剂或胶囊剂口服给药。这些制剂必须经过崩解和溶解才能被吸收。崩解大大增加了药物与胃肠液的接触表面积,从而促进药物的溶解和吸收。在制药过程中,为了促进崩解和溶解作用,往往添加一些崩解剂和其他赋形剂(如稀释剂、润滑剂、表面活性剂、粘合剂、分散剂)。表面活性剂通过增加药物的吸湿性、溶解度和分散性来增加其溶解速率。在制片过程中压片压力过大,或为了使药片免受肠道消化作用的影响而使用特殊的包衣,可延缓固体剂型的崩解。忌水性润滑剂(如硬脂酸镁)可与活性药物结合而降低其生物利用度。 Dissolution rate determines the availability of the drug for absorption. When slower than absorption, dissolution becomes the rate-limiting step. Overall absorption can be controlled by manipulating the formulation. For example, reducing the particle size increases the drug's surface area, thus increasing the rate and extent of GI absorption of a drug whose absorption is normally limited by slow dissolution. Dissolution rate is affected by whether the drug is in salt, crystal, or hydrate form. The Na salts of weak acids (eg, barbiturates, salicylates) dissolve faster than their corresponding free acids regardless of the pH of the medium. Certain drugs are polymorphic, existing in amorphous or various crystalline forms. Chloramphenicol palmitate has two forms, but only one sufficiently dissolves and is absorbed to be clinically useful. A hydrate is formed when one or more water molecules combine with a drug molecule in crystal form. The solubility of such a solvate may markedly differ from the nonsolvated form; eg, anhydrous ampicillin has a greater rate of dissolution and absorption than its corresponding trihydrate. 溶解速率溶解速率决定药物吸收时的可用度。当溶解速率低于吸收速率时,溶解就会制约吸收。药物的总体吸收可通过改变配方来加以调控,例如,减小颗粒体积可增加药物的表面积,从而增加那些溶解缓慢吸收受限的药物的胃肠道吸收速率和分量。药物的不同形式,如盐、晶体或水合物等,都可影响溶解速率。不管介质的pH是多少,弱酸的钠盐(如巴比妥酸盐,水杨酸盐)比其相应的游离酸溶解得快。某些药物有多种形态,可以非晶体形或不同晶体形存在。棕榈酸氯霉素有两种存在形态,但只有一种形态能充分溶解吸收,也因而被临床使用。当一个或多个水分子和一个晶体形药物分子相结合时,就构成一种水合物。这种的溶解度可能与非水合物的溶解度有明显的不同。例如,无水氨苄西林的溶解速率和吸收比其它相应水合物的溶解吸收速率都要快得多。

分子生药学英文论文

给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

在医学领域中,药学专业学生需要学习基础医学相关知识,成为社会需要的创新型药学人才。下文是我为大家整理的药学的论文 范文 的内容,欢迎大家阅读参考! 药学的论文范文篇1 试谈生物制药新技术发展分析 [摘 要]生物技术药物(biotech drugs)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。 文章 分析了通过生物制药新技术的创立,可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。 [关键词]生物 制药 新技术 探析 生物技术药物(biotechdrugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。 一 生物制药技术 目前生物制药主要集中在以下几个方向: 1、肿瘤。 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。 2、神经退化性疾病。 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。 3、自身免疫性疾病。 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。 4、冠心病。 美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′sReopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。 基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。 二 生物制药发展分析 未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。 生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。 除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些 方法 可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。 除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。 各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用DennisNoble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。 药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康 保险 业产生重大影响。 三 结语 总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。 参考文献 [1] 邱芳菊,谈对制药新技术的探析,论文网,2009,08. 药学的论文范文篇2 浅谈我国生物制药产业现状分析及发展战略 【摘要】 本文对我国生物制药产业现状及发展战略进行了研究。指出了我国生物制药产业突出的问题,比如创新研发不足,融资的 渠道 不畅,混乱的产业格局。针对出现的问题,提出了相应的解决方法,有仿制、创新并举,拓宽融资的渠道,进行标准化的管理。全文结构紧凑,希望可以促进相关问题的研究。 【关键词】 生物制药;发展;创新 近20年来,以酶工程、细胞工程、发酵工程、基因工程为代表现代的生物技术得到了迅猛的发展,并日益改变和影响着人们的生活和生产方式。自上世纪的90年代以来,随着基因组等重大技术突破使生物技术产业化的进程明显的加快。当前,有三分之二的生物技术成果被应用于医药行业,用以对传统医药学进行改良或开发特色新药,由此引起医药工业重大的变革。 1 我国的生物制药业现状 总体概述 我国的生物制药业起步比较晚,经过20多年的发展,基因工程药物作为核心研制、开发与产业化己具备了一定的规模。当前我国注册生物技术类公司有400多家,已经取得基因工程类药物试产或者生产批文企业占到四分之一,主要分布于一些经济发达省、市及地区,比如北京、上海、浙江、广东、山东、江苏等地。近十几年来,我国开发了一大批新特效类药物,大大解决过去使用常规方法不能够生产或生产成本非常昂贵药品生产技术的问题,这些药品可分别用来防治诸如遗传性、心脑肺血竹、免疫性、肿瘤、内分泌之类严重威胁到人类健康疑难病症,并且在避免毒副等作用明显要优于传统类药品。 突出的问题 创新研发不足 在加入世界贸易组织以后,中国必须要遵守《同贸易有关知识产权协议》,于专利期内如果仿制某类新药,开发一方有权索要4- 10亿美金赔款。国际的大型生物制药类企业,研发的费用可占到销售收入20%以上,在这个方面我国的生物制药行业长期处在弱势的情况。 引发国内生物的制药业缺乏创新原因就在生物制药类企业于研发思想意识上比较落后,新药的研发过程沿用了学术工作方式,先从文献索引开始,在实际上仍然是走一条模仿的道路,缺少原创性。在一方面,科技研究所研究成果,多数还沉淀于实验室或保险柜;另一方面,比较于产品的创新,企业更加注重于现有产品改革及提高。这样的结果就是,创新的成果市场的转化率很低,离产业化、规模化的需求仍有非常大的距离。 融资的渠道不畅 作为高新技术类行业,生物制药的产业特点决定它需要前期资本的投入很大,因此除了企业的自身盈利积累及政府的资助以外,资本融通问题就变得至关重要。风险投资机构在生物制药投资方面发挥着重要的作用,但是因为投资的收益不理想,最近几年来投资大幅减少,由全面投资转变为重点投资。因为风险投资的明显导向作用,引起其他方面投资纷纷的缩水,这都严重阻碍我国的生物制药业发展。 混乱的产业格局 我国的生物制药业未形成一定的格局,产品生产进入了壁垒期。国内企业于市场风险的估计不足,对于一些国外畅销类产品,生产能力严重过剩,引发整个市场低水平的恶性竞争。除最初几个产品先上市企业得到盈利以外,大多企业难以获得大的毛利率,在些甚至处在亏损的边缘。 2 我国生物制药产业发展战略 仿制、创新并举 制药行业里能销售真正有价值产品只有一种:就是患者使用药物。创新不仅仅是个学术过程,更是个商业过程,企业创新首先应当从需求开始,进而寻找满足此种需求功能,由功能来确认技术构思,由技术构思来考虑技术方案,这样就可降低产品研发技术上的风险。在制药业方面,产业链分成上游创新的阶段、中游物质的分离阶段、产品的加工阶段、下游的 营销策划 阶段及渠道分销等。而生物药品研究开发的方式应该趋向一体化,从研究试验到生产到市场整个的过程要实行一体化,创建企业、研究机构一体化联合体,于技术、资金、市场、人才与管理互动式发展,相互渗透。 拓宽融资的渠道 公开的资本市场里融资可为产品处于成熟的阶段生物制药类企业提供资本的渠道,但对大部分处于初创期或种子期的企业由于缺少稳定的现金、现实商品化的产品、可靠偿债的能力,难以从间接的资本市场来获得支持(比如银行类金融机构提供债权性的资本),并且高额的负债所产生沉重利息负担会极大制约企业后继的发展。 国外风险基金在逐渐地进入中国,包含大型生物制药公司和技术公司在内跨国企业使用联盟等方式对我国的生物制药类企业进行投资,及我国自身的私募基金、风险基金等发展,还有呼之欲出创业板,于我国生物制药类产业发展将会起到强大推动作用。我国的生物制药类企业只有增强项目的运作能力,才会有效地融合金融和生物制药技术,形成围绕企业成长的全面的发展链,进而构成项目运作良好的循环。 进行标准化的管理 国际贸易中,欧美发达国家凭借自身的经济、技术优势,制定苛刻的技术法规、技术标准和技术认证的制度,于发展中国家出口交易产生极大限制作用。医药的贸易也成为欧美国家使用技术壁垒里最频繁领域之一。国内的制药企业环境安全上的意识还很薄弱,实行国际认证企业的数目也极少,这都会在以后的我国医药产品出口上形成“技术壁垒”。为此,国内的生物制药类企业需清醒地认识到: 进行标准化的管理是国内生物制药类企业突破技术的壁垒,提高商品出口根本的途径。积极引进、培养熟悉国际规则又有制药的实践 经验 专家型的人才,进而使企业达到国际的先进水平。 参考文献 [1]董文政,张仕:生物制药业何时是艳阳天.中证网.2010(7).10―14 [2]中国统计年鉴.北京:中国统计出版社.2009(4).20―40。 [3]朱少杰,蔡茂森:论技术贸易壁垒的抑制效应和我国出口行业的对策.国际贸易问题.2008(7).8―11。 [4]令狐谱,黄速建:并购后整合:企业并购成败的关键因素.经济管理.2009(3).3―5 药学的论文范文篇3 浅谈药品不良反应与安全用药 摘要:近年来关于药物不良反应的报道和讨论比较多,已引起了各方面的注意。临床上对药品的要求不仅仅局限于对疾 病的治疗作用,同时也要求在治疗疾病的同时,所使用的药品应当尽可能少地出现药物不良反应(ADR)。根据WHO 报告 ,全球死亡人数中有近1/7的患者是 死于不合理用药。在我国,据有关部门统计,药物不良反应在住院患者中的发生率约为20%,1/4是抗生素所致。 每年由于滥用抗生素引起的耐药菌感染造成的 经济损失就达百亿元以上。药品不良反应[1],是指合格药品在正常用法、规定剂量下出现的有害的和与用药目的无关的反应。随着医药科学的发展,临床上对药 品的要求不仅仅局限于防治作用,更注重使用过程中可能出现的不良反应,如何做好安全、有效的用药,已成为当务之急。合理用药始终与合理治疗伴行,是一个既 古老又新颖的课题,也是医院药学工作者永恒的话题。医院药学工作的宗旨是以服务患者为中心、临床药学为基础,促进临床科学用药,其核心是保障临床治疗中的 安全用药。目前公认的合理用药的基本要素:以当代药物和疾病的系统知识和理论为基础,安全、有效、经济及适当的使用药物。 【关键词】 合理的用药 引言: 随着社会的发展,如何安全、有效、合理的用药已成为社会关注的 热点 。近年来关于药物不良反应(adverse drug reaction,adr)的报道和讨论比较多,已引起了各方面的注意。临床上对药品的要求不仅仅局限于对疾病的治疗作用,同时也要求在治疗疾病的同时,所使用的药品应当尽可能少地出现adr。根据who报告,全球死亡人数中有近1/7的患者是死于不合理用药[1]。在我国,据有关部门统计,药物不良反应在住院患者中的发生率约为20%,1/4是抗生素所致。每年由于滥用抗生素引起的耐药菌感染造成的经济损失就达百亿元以上[2]。 合理用药始终与合理治疗伴行,是一个既古老又新颖的课题,也是医院药学工作者永恒的话题。医院药学工作的宗旨是以服务患者为中心、临床药学为基础,促进临床科学用药,其核心是保障临床治疗中的安全用药。目前公认的合理用药的基本要素:以当代药物和疾病的系统知识和理论为基础,安全、有效、经济及适当的使用药物[2]。 下面结合临床工作实践,并结合文献,浅谈一下临床常见的药品不良反应与安全用药问题。 一、抗生素滥用,导致药物的不合理应用 现如今医疗纠纷频发、医源性或药源性事件居高不下、医疗以及用药成本过高等,已成为多数国家、地区面临的问题,我国在这些方面也有许多相似之处。合理用药的实践步履艰难,进展迟缓,远未引起人们的足够重视。实际上,药物不良反应已成为危及人类健康的主要杀手,而抗生素的滥用现象在我国临床中已非常普遍。有资料表明,我国三级医院住院患者抗生素使用率约为70%,二级医院为80%,一级医院为90%[3]。抗生素的滥用,不仅使药物使用率过高、导致医药费用的急剧上涨,同时也给临床治疗上带来了严重的后果。现在,很少有医生对抗生素进行过系统、全面的了解,使用的盲目性很大,在选择抗生素时不加思考,不重视病原学检查,迷恋于“洋、新、贵”,盲目的大剂量使用广谱抗生素,或几种抗菌药同时应用,致使大量耐药菌产生,使难治性感染越来越多,医疗费用也越来越高。临床上很多严重感染者死亡,多是因为耐药感染使用抗生素无效引起的。adr以抗生素位居首位。 比如说上呼吸道感染,有90%以上是由病毒引起的,但临床上使用抗生素的却不在少数。滥用的后果是在宏观上造成细菌的抗药性增强,抗生素的效力降低 甚至丧失,最终导致人类无药可用;在微观上会对患者的身体造成药源性损害。由于人体内部有许多菌群,正常情况下他们相互制约,形成一种平衡,抗生素的滥用就可能对某些有益菌群造成破坏,使一些有害菌或病毒乘虚而入导致二重感染甚至死亡。另外,临床分科过细,医师缺乏正确的抗菌药物知识;正确的药品信息获取困难;医师缺乏全面的药学知识等,也是导致用药错误的重要原因。长时期以来,人们已经习惯把抗生素当作家庭的常备药,稍微有些头痛脑热就服用;而有一些患者主动要求用好药、贵药,就更造成了资源浪费和细菌耐药的发生。 由此看出,合理用药不仅仅是医学问题,也不仅仅是临床医师需要注意的问题。要真正做到合理用药,医生、患者、药师、药品管理部门需要互相协作才能得以实现。 二、提高自我保护意识,防止药品不良反应的发生 导致adr的原因十分复杂,而且难以预测。主要包括药品因素、患者自身的因素和其他方面的因素。 药品因素 (1)药物本身的作用:如果一种药有两种以上作用时,其中一种作用可能成为副作用。如:麻黄碱兼有平喘和兴奋作用,当用于防治支气管哮喘时可引起失眠。(2)不良药理作用:有些药物本身对人体某些组织器官有伤害,如长期大量使用糖皮质激素能使毛细血管变性出血,以致皮肤、黏膜出现瘀点、瘀斑。(3)药物的质量:生产过程中混入杂质或保管不当使药物污染,均可引起药物的不良反应。(4)药物的剂量:用药量过大,可发生中毒反应,甚至死亡。(5)剂型的影响:同一药物的剂型不同,其在体内的吸收也不同,即生物利用度不同,如不掌握剂量也会引起不良反应。 患者自身的原因 (1)性别:药物性皮炎男性比女性多,其比率约为3∶2;粒细胞减少症则女性比男性多。 (2)年龄:老年人、 儿童 对药物反应与成年人不同,因老年人和儿童对药物的代谢、排泄较慢,易发生不良反应;婴幼儿的机体尚未成熟,对某些药较敏感也易发生不良反应。调查发现,现60岁以下的人,不良反应的发生率为(52/887),而60岁以上的老年人则为(113/713)[4]。 (3)个体差异:不同人种对同一药物的敏感性不同,而同一人种的不同个体对同一药物的反应也不同。(4)疾病因素:肝、肾功能减退时,可增强和延长药物作用,易引起不良反应。 其他因素 (1)不合理用药:误用、滥用、处方配伍不当等,均可发生不良反应。 (2)长期用药:极易发生不良反应,甚至发生蓄积作用而中毒。 (3)合并用药:两种以上药物合用,不良反应的发生率为,6种以上药物合用,不良反应发生率为10%,15种以上药物合用,不良反应发生率为80%[5]。 (4)减药或停药:减药或停药也可引起不良反应。例如治疗严重皮疹,当停用糖皮质激素或减药过速时,会产生反跳现象。 各种药品都可能存在不良反应,中药也不例外,只是程度不同,或是在不同人身上发生的几率不同。出现药品不良反应时也不必过于惊慌,患者用药时,一定要仔细阅读 说明书 ,如果出现了较严重或说明书上没有标明的不良反应,要及时向医生报告。 三、怎样做到安全用药 (1)不能轻信药品 广告 。有些药品广告夸张药品的有效性,而对药品的不良反应却只字不提,容易造成误导。 (2)不要盲目迷信新药、贵药、进口药。有些患者认为,凡是新药、贵药、进口药一定是好药,到医院里点名开药或在不清楚自己病情的情况下就到药店里自己买药,都是不恰当的。 (3)严格按照规定的用法、用量服用药物。用药前应认真阅读说明书,不能自行增加剂量,特别对于传统药,许多人认为多吃少吃没关系,剂量越大越好,这是不合理用药普遍存在的一个重要原因。 (4)药品消费者应提高自我保护意识,用药后如出现异常的感觉或症状,应停药就诊,由临床医生诊断治疗。这里需要告诫药品消费者的是,有些人服用药品后出现可疑的不良反应,不要轻易地下结论,要由有经验的专业技术人员认真地进行因果关系的分析评价。 随着人们对健康和生活质量问题的日益关注,药品不良反应的危害已经越来越引起全社会的重视。国家正在建立、健全药品不良反应监测报告制度,尽量避免和减少药品不良反应给人们造成的各种危害。因此,人们应抱着无病不随便用药,有病要合理用药,正确对待药品的不良反应的态度,正确的服用药物和保管药物,不断提高用药水平,从而达到真正的安全、有效、经济、适当地合理用药。 参考文献 1 徐年卉,林国生,付洁,等.合理应用抗菌药物管理工作的经验探讨.中华医院感染学杂志,2014,12(2):143-144. 2 唐镜波.合理用药的评价与实践要点.全军临床合理用药研讨班论文摘要汇编,1990,64. 3 刘振声,金大鹏,陈增辉.医院感染管理学.北京:军事医学科学出版社,2014,314. 4 孙定人.药物不良反应,第2版.北京:人民卫生出版社,1998,103. 猜你喜欢: 1. 电大药学论文范文 2. 药学论文范文 3. 大专药学毕业论文范文 4. 药学毕业论文范文 5. 药学大专毕业论文范文

你们学校没有CNKI吗??那里面你要的文章用卡车装。

分子生药学论文英文论文

original paper version Structure for Deoxyribose Nucleic AcidJ. D. Watson and F. H. C. Crick (1)April 25, 1953 (2), Nature (3), 171, 737-738We wish to suggest a structure for the salt of deoxyribose nucleic acid (.). This structure has novel features which are of considerable biological structure for nucleic acid has already been proposed by Pauling (4) and Corey1. They kindly made their manuscript available to us in advance of publication. Their model consists of three intertwined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory for two reasons:(1) We believe that the material which gives the X-ray diagrams is the salt, not the free acid. Without the acidic hydrogen atoms it is not clear what forces would hold the structure together, especially as the negatively charged phosphates near the axis will repel each other.(2) Some of the van der Waals distances appear to be too three-chain structure has also been suggested by Fraser (in the press). In his model the phosphates are on the outside and the bases on the inside, linked together by hydrogen bonds. This structure as described is rather ill-defined, and for this reason we shall not comment on wish to put forward a radically different structure for the salt of deoxyribose nucleic acid (5). This structure has two helical chains each coiled round the same axis (see diagram). We have made the usual chemical assumptions, namely, that each chain consists of phosphate diester groups joining beta-D-deoxyribofuranose residues with 3',5' linkages. The two chains (but not their bases) are related by a dyad perpendicular to the fibre axis. Both chains follow right-handed helices, but owing to the dyad the sequences of the atoms in the two chains run in opposite directions (6) . Each chain loosely resembles Furberg's2 model No. 1 (7); that is, the bases are on the inside of the helix and the phosphates on the outside. The configuration of the sugar and the atoms near it is close to Furberg's "standard configuration," the sugar being roughly perpendicular to the attached base. There is a residue on each every A. in the z-direction. We have assumed an angle of 36° between adjacent residues in the same chain, so that the structure repeats after 10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from the fibre axis is 10 A. As the phosphates are on the outside, cations have easy access to them. Figure 1This figure is purely diagrammatic (8). The two ribbons symbolize the two phophate-sugar chains, and the horizonal rods the pairs of bases holding the chains together. The vertical line marks the fibre structure is an open one, and its water content is rather high. At lower water contents we would expect the bases to tilt so that the structure could become more novel feature of the structure is the manner in which the two chains are held together by the purine and pyrimidine bases. The planes of the bases are perpendicular to the fibre axis. They are joined together in pairs, a single base from one chain being hydroden-bonded to a single base from the other chain, so that the two lie side by side with identical z-coordinates. One of the pair must be a purine and the other a pyrimidine for bonding to occur. The hydrogen bonds are made as follows: purine position 1 to pyrimidine position 1; purine position 6 to pyrimidine position it is assumed that the bases only occur in the structure in the most plausible tautomeric forms (that is, with the keto rather than the enol configurations) it is found that only specific pairs of bases can bond together. These pairs are: adenine (purine) with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine) (9).In other words, if an adenine forms one member of a pair, on either chain, then on these assumptions the other member must be thymine; similarly for guanine and cytosine. The sequence of bases on a single chain does not appear to be restricted in any way. However, if only specific pairs of bases can be formed, it follows that if the sequence of bases on one chain is given, then the sequence on the other chain is automatically has been found experimentally3,4 that the ratio of the amounts of adenine to thymine, and the ratio of guanine to cytosine, are always very close to unity for deoxyribose nucleic is probably impossible to build this structure with a ribose sugar in place of the deoxyribose, as the extra oxygen atom would make too close a van der Waals previously published X-ray data5,6 on deoxyribose nucleic acid are insufficient for a rigorous test of our structure. So far as we can tell, it is roughly compatible with the experimental data, but it must be regarded as unproved until it has been checked against more exact results. Some of these are given in the following communications (10). We were not aware of the details of the results presented there when we devised our structure (11), which rests mainly though not entirely on published experimental data and stereochemical has not escaped our notice (12) that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic details of the structure, including the conditions assumed in building it, together with a set of coordinates for the atoms, will be published elsewhere (13).We are much indebted to Dr. Jerry Donohue for constant advice and criticism, especially on interatomic distances. We have also been stimulated by a knowledge of the general nature of the unpublished experimental results and ideas of Dr. M. H. F. Wilkins, Dr. R. E. Franklin and their co-workers at King’s College, London. One of us (J. D. W.) has been aided by a fellowship from the National Foundation for Infantile Paralysis.

Surfactants may affect drug dissolution in an unpredictable fashion. Low concentrations of surfactants lower the surface tension and increase the rate of drug dissolution, whereas higher concentrations of surfactants tend to form micelles with the drug and thus decrease the dissolution rate.表面活性剂可以影响药物溶出是一种不可预测的方式,低浓度的表面活性剂降低表面张力和提高溶出率,然而高浓度的表面活性剂趋于与药物形成胶团,因此降低药物溶出速率。Introduction of Nucleic acidsNucleic acids are polyanionic molecules of high molecular weight. These polymers are composed of sequence of subunits or nucleotides so that the whole is usually termed a polynucleotide. The nucleic acids are of two main varieties, ribonucleic (RNA) and deoxyribonucleic (DNA). DNA is found primarily in the chromatin to the cell nucleus, whereas 90% of RNA is present in the cell cytoplasm and 10% in the nucleolus. The two classes of nucleic acids are distinguished primary on basis of the five-carbon atom sugar of pentose present. Two general kinds of bases are found in all nucleic acids. One type is a derivative of the parent compound purine. Principle examples are guanine and adenine. The second class of bases found in all nucleic acid is derived from the parent compound pyrimidine. 介绍核酸核酸是超高分子量聚阴离子分子。这些聚合物组成,亚基或核苷酸,使整个通常称为多核苷酸序列。核酸有两种,主要品种核糖核酸(RNA)和脱氧核糖核酸(DNA)的。 DNA是主要存在于细胞核内的染色质,而90%的RNA在细胞质现在和10%的核仁。核酸类的两个主要的区别在于对目前的五个戊糖碳原子的糖基础。一般两个种基地发现,在所有核酸。一类是母体化合物嘌呤的衍生物。原理是鸟嘌呤和腺嘌呤的例子。在所有发现核酸碱基第二类是来自母体化合物嘧啶。

医学论文是医学科学研究工作的文字记录和书面总结,是医学科学研究工作的重要组成部分。医学论文报道医学领域领先的科研成果;是医学科学研究工作者辛勤劳动的结晶,是人类医学科学发展和进步的动力。尤其是SCI论文,能使成果向国际上展示,并有可能被人采用和传播,为人类造福,因此,更具有意义与价值,那么一篇好的英文SCI医学论文改怎么写呢?今天小编就为大家一步步分析。英文SCI医学论文应注意的几大环节:写前准备Preparation, 论文结构 Structure, 论文文题Title, 摘要Abstracts, 引言Introduction, 文章主体Body of Paper, 结论 Conclusion, 和致谢Acknowledgement。1、Preparation就是收集资料,找出灵感和方向,主要依靠的是期刊和文献journal in library。2、Structure是重点,文章的结构应该:选题要宽,研究方向要窄,然后最后的结论又发散开来。在文章主体前后都必须有声明(declarativestatement),用最少的字句表达出自己的观点,吸引读者。3、Title必须清晰简短(clear,short),以提升读者的阅读兴趣,然而文题中切记不能出现缩略语和自己的结论。4、Abstracts 是文章的一个缩影,一定要简明扼要(可为一段文字,篇幅<200字),按照文章顺序介绍主要研究对象(subject)、实验设计 (design)、实验步骤(procedures)以及最后结果(results),这种介绍必须让非专业的人员能够看懂。5、引言同样要保证简短,顺序是一般背景介绍、别人工作成果、自己的研究目的及工作简介,其中介绍别人工作时只需介绍和自己最相关的方面,而对自己的工作介绍不用说明细节,因为这个要放到文章正文中去。不要忘记在介绍自己工作之前要有一个声明。6、Body部分可以分为方法methods、讨论discussion和结果result三个部分:(1) Methods,详尽的介绍自己的实验方案以便于他人能够重复自己的实验过程,对于通用的实验方案可以简略,重点要放到自己的独创方案上面,按照实验的先后顺序介绍,为了文章的阅读方便,不要使用过多层次的副标题subheadings。(2)Discussion,这个部分是为了以后的study ,在其中提出自己的 problem 或者是hypothesis,和别人的成果进行比较,暗示自己的主要收获,为后面的conclusion做准备。(3)Result,使用text、table、figure等手段表达出来,其中table不要使用过多,而 figure必须保证图线清楚、注解明确,必要的时候还要对于自己的结论进行解释说明。7、Conclusion中不要包含文章未涉及的信息,保持简洁;如果此文章只是项目的一部分,稍做说明。在写完之后回头看看是否有逻辑上的错误,是否考虑到了读者兴趣等。8、Acknowledgement,不要忘记,这个不仅反应了一个人的个人品质,还一定程度体现了研究水平。

Congenital kidney maldevelopment and molecular biology research The abstract kidney maldevelopment is the kidney has theunusual clinical consequence, its typical histo-pathologycharacteristic is appears originally Beginning kidney pellet and 肾小管, 软骨样 metaplasia andso on. In recent years through application molecular technology and soon target gene and home position clone Has the molecular regulation mechanism research to the normalmammal kidney, has to the congenital kidney maldevelopmentpathogenesis More understandings. This article will make a discussion to thecongenital kidney maldevelopment molecular biology research recentsituation, and will be right Including the growth factor several kind of gene mutation,copies the regulative barrier and the expression change and the kidneysends the good relations Carries on the discussion. The kidney maldevelopment is the kidney has not been able to carry onthe congenital disease which the normal growth growth forms, in thepast arose to it The mechanism understanding are really few, along with themember biological technology development and the application, expoundsthe kidney occurrence from the member study mechanism Had a more thorough understanding from the molecular biologylevel to the kidney maldevelopment occurrence. This article onshort-term regarding this question The research progress makes an introduction. 1 kidney occurs with the kidney maldevelopment Before the normal mammalia kidney is located between liesbetween 中胚层, 中胚层 the differentiation forms the kidneydrive pipe, after further tempts Leads forms 中肾 the drive pipe to the ureter bud, under theureter bud induction, end the embrionic body two sides fresh reninssplits up into after The kidney 胚基, the kidney embryonic development isprecisely completes by the ureter bud and the latter kidney 胚基 twoparts, former gradually grows Becomes 肾盂, 肾盏 and 集合管, latter grows肾小管and the kidney pellet, finally 肾小管and集合管docking, Constitutes normally 肾单位. If the ureter bud and thelatter kidney 胚基 two parts cannot grow according to the normaldegree and implement rightly Meets namely creates the kidney maldevelopment. The kidneymaldevelopment may be partial, also may be complete. Most types The kidney maldevelopment partner has the cyst, prompts themaldevelopment each kind of form to have machine-made together in theformation. On clinical common congenital kidney maldevelopment including multi-pouches, obstruction kidney maldevelopment as well as with gene The related kidney growth is unusual. The histo-pathologyimportant characteristic appears primitive 肾小管and the metaplasiacartilage. Complete list The side kidney maldevelopment, may display for does not havethe symptom. In most maldevelopment case of illness, the kidney flawis the double side, prompts Gene mutation in normal kidney growth vital role. Shan Cexingdisease then possibly is one kind of obtaining damage is the resultof, This damage destroyed the gene normal expression, thenaffected maturely had the vital significance to the kidney the proteinproduction. 2 kidneys maldevelopment common type congenital multi- pouches kidneys maldevelopment The multi- pouches kidney maldevelopment (multiple cystichypoplastic) is one common completeness The kidney maldevelopment, are many for the single sidepathological change (14-20% for double side nature), contracts thekidney to lose the normal shape, irregular The size cyst replaces, the kidney function loses and oftenthe partner has the ureter obstruction, is newborn abdomen Bao Kuaizuicommon One of reasons. The multi- pouches maldevelopment kidney outlook assumes thekidney-shaped structure, the most case of illness partner has a 闭锁ureter. Pregnancy The early polycystic kidney includes the normal growth to havethe ingredient, loses the urine including the induction after kidney胚基 island and the branch The tube drive pipe, may distinguish the pouch change in thisstage 肾单位 each Duan Yijun [ 1 ]. After lives the multi- pouchesmaldevelopment kidney The histo-pathology variation including the primitive肾小管pouch change, expands also the disarrangement of thestructure, has around the obvious tube Response nature, textile fiber myo- link formation, cartilageingredient as symbol organization transformation and so on. congenital obstructions kidneys maldevelopment The congenital urine road obstruction in dissects in theposition often to occur to the ureter and urinary bladder 连接处,after congenitalness The urethra valve is the babies and infants uninary systemobstruction important reason. Congenital obstruction kidney histologycharacteristic and multi- pouches The kidney maldevelopment is similar, including 肾单位 eachDuan Rushen the pellet pouch transformation, the nature expands alsothe disarrangement of the structure, the marrow The nature and the straight small blood vessel remarkablehypoplasia, has around the tube the textile fiber myo- link, the manykinds of forms kidney pellet and the growth kidney Unit each section. Is same with the multi- pouches kidneymaldevelopment, the congenital obstruction kidney performance is aseries of diseases, its degree and The embryonic period urine 流阻 related fills the time whichoccurs [ 2 ]. The table partner has the kidney to grow the unusual syndrome ------------------------------------------------------ Syndrome chromosome heredity form ------------------------------------------------------ The tip and refers to (foot) to be abnormal (Apert ' s)常染色体 the dominance Sends chest gallery malnutrition 常染色体 recessivenesswhich suffocates Obese, reproduction hypofunction and so on 常染色体recessiveness Gill - ear - kidney 常染色体 dominance Campomelic growth exceptionally 常染色体 recessiveness Brain - liver - kidney (Passarge ' s) 常染色体recessiveness Fryns ' s 常染色体 recessiveness Goemine ' s X- connection Goldston (hereditary blood capillary expands) 常染色体recessiveness? Hall-Pallster ' s sending out Ivemark ' s 常染色体 recessiveness Marden-Walker ' s 常染色体 recessiveness Mecket-Gruber 常染色体 recessiveness Miranda ' s 常染色体 recessiveness Senlor-Loken ' s 常染色体 recessiveness? Three bodies chromosomes 16-18 (Edwards) Three bodies chromosomes 13-15 (Patau) Three bodies chromosomes 21 (Down) 结节性 hardened 常染色体 dominance Von Hippel-Lindau 常染色体 dominance ------------------------------------------------------ kidneys maldevelopment syndrome The kidney maldevelopment syndrome is includes kidney abnormalthe and so on pouch maldevelopment hereditary indication group (seesthe table ). Presently expounds a part of syndromes its special gene andthe protein flaw. The maldevelopment phenotype apparent rate assumes Presently a band, prompts has other gene influence kidneysfinally 表型. The maldevelopment usually all contains the many kindsof organs, Explained the flaw the gene involves the normal organogenesisthe foundation. The histo-pathology discovered that, this kind ofsyndrome light is possible Appears the great pouch to form (for example 结节性hardening), heavy possibly appears the pouch growth exceptionally withthe renal failure (Meckel- Gruber syndrome). 3 kidneys maldevelopment molecular biology The present research discovery has the many kinds of genes andthe kidney maldevelopment related, like WT-1, Pax-2, GDNF, B Gene and so on F-2, BMP-7, PDGF, Wnt-4 in after kidney 胚基expression. Pax-2, c-ret, BMP-7, alpha 3 beta 1 and so on in ureter bud expression. When these genes lack ordestroys, the kidney cannot normally occur with the growth [ 3 ]. Sonnenberg and so on [ 4 ] 补体 RNA and the DNA probeconducts the research with the specificity immune body and theemission mark, the determination Multi- peptides growth factor, heparin structure growth factorand their acceptor, extracellular matrix member and cell surfaceentire Gathers gene and so on element in the kidney growth specificexpression position. For example liver cell growth factor mainly inafter kidney embryo gene Expression, but its acceptor c-met in ureter plumule epidermisexpression. This kind of peptides and its the acceptor are thin in twokind of types On butcher's expression explanation ureter drive pipe formsthe induction to the after 肾间 archery target. Schuchardt and so on[ 5 ] passes Using the gene recombination and the preparation 纯合子invalid sudden change mouse, discovers some influence kidney growththe gene and the multi- peptides, like The shift growth factor - beta, the liver cell growth factor,the insulin type growth factor - II, according to saw finally shows The inference specific gene has the function in the normalkidney. Tyrosine activating enzyme body acceptor c-ret leads in thebranch ureter The tube as well as matches in the nerve nutrition factorwhich the body - neuroglia grows to express. When the mouse c-ret geneis destroyed, leads Sends the entire kidney maldevelopment. Copies the factor genecode protein to be able with the DNA union, moreover has regulatesother gene tables Reaches function. In the mammal kidney growth, Wilms ' tumorgene WT-1 and Pax2 code copies the factor, Its expression form influence kidney cell differentiation [ 6,7 ]. The gene syndrome and the kidney form exceptionally related, inthe table arranges in order Leaves the disease, some syndromes have the heredity, somewhathas located the specific gene flaw with the home position clonetechnology [ 8 ]. These syndromes are being sick the family members to beable to have the remarkable 表型 variation. This kind of situationand in 纯合子 is invalid The sudden change mouse sees the variation is similar, namelythe kidney finally 表型 is decided by the experimental mouse's genebackground. The kidney maldevelopment occurrence is several kind of differentgenes flaws, perhaps meets in the embryo development period sends 畸the factor And so on many kinds of genes regulation barrier finaloutcome. 肾间 the nature - epidermis transforms process as well asureter branch and growth Is complex and the huge gene system guides by, some genes arethe kidney specificity, some rights and wrongs are special . Certain growth factor genes, although they have the timeexpression in the kidney to be active, but when they are destroyedcertainly not shade The loud kidney normal growth, this meant the growth kidneynormal expression each kind of gene has in the function overlaps [ 9]. Another one Plants the possibility is this kind of normal expression formdestruction in the kidney maldevelopment occurrence development thecertain function, or Is the kidney maldevelopment cause. The latter 肾间 nature flaw may cause the kidney , the gene ill should is the dislocation expression, possiblyto kidney The maldevelopment plays the certain role. On clinical hasthe isolation the multi- pouches kidney maldevelopment and theobstruction kidney maldevelopment two Parallel existence case of illness. Congenitalness and theexperimental nature single gene mutation may cause the pouch kidneygrowth to be unusual, these genes The sudden change may change mutually relates. Theoreticallyspeaking, the sudden change may affect: (1) 胚基 proliferation andsplit up ureter drive pipe minute An institute must peptide and matrix protein expression; (2)Ureter drive pipe to after kidney 胚基 signal reaction capacity; (3)Loses After the ureter drive pipe expression starts and maintainsthe kidney 胚基 epidermis induction to need the protein the ability;(4) Latter kidney 胚基 to these letters The number carries on the response the ability; (5) Ureterbud and latter kidney 胚基 cell to signal reaction capacity [ 10 ]. Recently already separated the phosphoric acid glucose phaseomanniteglycoprotein gene, was called the GPC3 gene. The GPC3 flaw and aremany Pouch kidney maldevelopment related [ 11 ]. Although thesingle gene may finally cause the kidney maldevelopment with themulti- genes flaw, but Its 表型 possibly decided to receives the gene regulationwhich affects to be out of balance or the expression change at first,like congenital obstruction and pouch Kidney maldevelopment [ 12, 13 ]. The multi- pouchesmaldevelopment kidney, and in the nature has the growth factor gene inthe pouch epidermis Change. In the mouse obstruction growth kidney, the bloodvessel tense element and the shift growth factor assumes excessivelyexpresses [ 14 ]. Grinds Investigates the proof, in the after kidney growth unusualarea, promotes the acorn tube epidermis to appear the pouch changefactor Pax2 and Bcl-2 same Assumes excessively expresses [ 15, 16 ]. This researchpossibly can provide the important line to each kind of form kidneymaldevelopment pathogenesis Rope. 先天性肾发育不良与分子生物学的研究 摘要 肾发育不良是肾发生异常的临床后果,其典型病理组织学特征是出现原始肾小球和肾小管、软骨样化生等。近年来通过应用靶基因和原位克隆等分子技术对正常哺乳动物肾脏发生分子调控机制的研究,对先天性肾发育不良的发病机理有了更多的了解。本文将对先天性肾发育不良的分子生物学研究近况作一讨论,并对包括生长因子在内的几种基因突变、转录调控障碍及表达变化与肾发良不良的关系进行探讨。 肾发育不良是肾脏未能进行正常生长发育形成的先天性疾病,过去对其发病机理了解甚少,随着分子生物技术的发展和应用,从分子学机理来阐明肾脏的发生,从分子生物学水平对肾发育不良的发生有了较深入的认识。本文就近期对此问题的研究进展作一介绍。1 肾发生与肾发育不良 正常哺乳类肾脏位于间介中胚层,中胚层分化形成前肾导管,经进一步诱导形成中肾导管至输尿管芽,在输尿管芽诱导下,胚体尾端两侧的生肾素分化为后肾胚基,肾脏的胚胎发育正是由输尿管芽和后肾胚基二部分完成的,前者逐步发育成肾盂、肾盏和集合管,后者发育成肾小管和肾小球,最后肾小管和集合管对接,构成正常的肾单位。如果输尿管芽和后肾胚基二部分不能按正常程度发育和实行对接即造成肾发育不良。肾发育不良可以是部分性的,也可以是完全性的。多数类型的肾发育不良伴有囊肿,提示发育不良的各种形式在形成中有共同机制。 临床上常见的先天性肾发育不良包括多囊性、梗阻性肾发育不良以及与基因有关的肾发育异常。病理组织学重要特征是出现原始肾小管和化生软骨。完全性单侧肾发育不良,可表现为无症状。多数发育不良病例中,肾缺陷是双侧性的,提示基因突变在正常肾发育中起重要作用。单侧性疾病则可能是一种获得性损伤所致,该损伤破坏了基因的正常表达,进而影响了对肾成熟有重要意义的蛋白质的产生。2 肾发育不良常见类型 先天多囊性肾发育不良 多囊性肾发育不良(multiple cystic hypoplastic)是一种常见的完全性肾发育不良,多为单侧病变(14-20%为双侧性),患肾失去正常形态,被不规则的大小囊肿所代替,肾脏功能丧失并常伴有输尿管梗阻,是新生儿腹部包块最常见的原因之一。 多囊性发育不良肾外型呈肾形结构,多数病例伴有一个闭锁的输尿管。妊娠早期的多囊肾含有正常发育所必须的成份,包括未诱导的后肾胚基岛和分支的输尿管导管,在此阶段肾单位各段已均可鉴别出囊性改变[1]。生后多囊性发育不良肾的病理组织学变异包括原始肾小管的囊性改变、膨大且结构破坏、具有明显管周围反应的间质、纤维肌环的形成、软骨成分为标志的组织转化等。 先天梗阻性肾发育不良 先天性尿路梗阻在解剖位置上常发生于输尿管和膀胱的连接处,先天性后尿道瓣膜是婴幼儿泌尿系统梗阻的重要原因。先天梗阻性肾的组织学特征与多囊性肾发育不良相似,包括肾单位各段如肾小球的囊性转化、间质膨大且结构破坏、髓质和直小血管显著发育不全、发生管周围纤维肌环、多种形式的肾小球和发育的肾单位各段。与多囊性肾发育不良一样,先天梗阻性肾表现为一系列疾病,其程度与胚胎期尿流阻塞发生的时间有关[2]。表 伴有肾发育异常的综合症------------------------------------------------------综合症 染色体遗传形式------------------------------------------------------尖头并指(趾)畸形(Apert’s) 常染色体显性 致窒息的胸廓营养不良 常染色体隐性 肥胖、生殖机能减退等 常染色体隐性 鳃-耳-肾 常染色体显性 Campomelic发育异常 常染色体隐性 脑-肝-肾(Passarge’s) 常染色体隐性 Fryns’s 常染色体隐性 Goemine’s X-连接的 Goldston(遗传性毛细血管扩张) 常染色体隐性? Hall-Pallster’s 散发的 Ivemark’s 常染色体隐性 Marden-Walker’s 常染色体隐性 Mecket-Gruber 常染色体隐性 Miranda’s 常染色体隐性 Senlor-Loken’s 常染色体隐性? 三体染色体16-18(Edwards) 三体染色体13-15(Patau) 三体染色体21(Down) 结节性硬化 常染色体显性 Von Hippel-Lindau 常染色体显性------------------------------------------------------ 肾发育不良综合症 肾发育不良综合症是包括囊性发育不良等肾畸形在内的遗传性征候群(见表)。现阐明一部分综合症其特异的基因和蛋白质缺陷。发育不良表现型的外显率呈现一个谱带,提示有其他基因影响肾的最终表型。发育不良通常都包含多种器官,说明缺陷的基因涉及正常器官发生的基础。病理组织学发现,此类综合症轻者可能出现巨囊形成(如结节性硬化),重者可能出现囊性发育异常和肾衰竭(Meckel-Gruber综合症)。3 肾发育不良分子生物学 目前的研究发现有多种基因与肾发育不良有关,如WT-1、Pax-2、GDNF、BF-2、BMP-7、PDGF、Wnt-4等基因在后肾胚基表达。Pax-2、c-ret、BMP-7、α3β1等在输尿管芽表达。当这些基因缺乏或被破坏时,肾脏不能正常地发生与发育[3]。Sonnenberg等[4]用特异性抗体与放射标记的补体RNA和DNA探针进行研究,确定了多肽生长因子、肝素结构生长因子及它们的受体、细胞外基质分子和细胞表面整合素等基因在肾发育中的特定表达位置。例如肝细胞生长因子主要在后肾胚基因内表达,而其受体c-met则在输尿管胚芽上皮表达。这种多肽及其受体在两种类型细胞上的表达说明输尿管导管对后肾间质的形成起诱导作用。Schuchardt等[5]通过应用基因重组与制备纯合子无效突变小鼠,发现一些影响肾发育的基因和多肽,如转移生长因子-β、肝细胞生长因子、胰岛素样生长因子-Ⅱ,根据所见到的最终表型推断特定基因在正常肾发生中的作用。酪氨酸激酶体受体c-ret在分支输尿管导管以及配体-神经胶质衍生的神经营养因子上表达。当小鼠c-ret基因被破坏时,导致全肾发育不良。转录因子基因编码蛋白能与DNA结合,而且具备调控其它基因表达的功能。在哺乳动物肾发育中,Wilms’肿瘤基因WT-1及Pax2均编码转录因子,其表达形式影响肾细胞的分化[6,7]。基因性综合症与肾形成异常有关,表中所列出的疾病,有些综合症有遗传性,有些用原位克隆技术已定位出特定的基因缺陷[8]。这些综合症在患病家族成员能发生显著的表型变异。这种情况与在纯合子无效突变小鼠所见的变异相似,即肾的最终表型取决于实验小鼠的基因背景。 肾发育不良的发生是几种不同的基因缺陷,或是在胚胎发育期遇到致畸因子等多种基因调控障碍的最终结果。肾间质-上皮转化的过程以及输尿管分支和生长,是由一个复杂而庞大的基因体系来导向,有些基因是肾特异性的,有些是非特异的。某些生长因子基因,尽管它们在肾发生期表达活跃,但当它们被破坏时并不影响肾的正常发育,这意味着发育肾正常表达的各种基因在功能上有重叠[9]。另一种可能性是这种正常表达形式的破坏在肾发育不良的发生发展中起一定作用,或者就是肾发育不良的起因。 后肾间质缺陷可导致肾发育不良。另外,基因不适应和错位表达,可能对肾发育不良起一定作用。临床上有孤立的多囊性肾发育不良和梗阻性肾发育不良两者并行存在的病例。先天性和实验性单基因突变均可导致囊性肾发育异常,这些基因突变可改变相互联系。从理论上讲,突变可影响:①胚基增生和分化输尿管导管分支所必需的肽和基质蛋白的表达;②输尿管导管对后肾胚基信号的反应能力;③输尿管导管表达启动和维持后肾胚基上皮诱导所需蛋白的能力;④后肾胚基对这些信号进行反应的能力;⑤输尿管芽和后肾胚基细胞对信号的反应能力[10]。 最近已经分离出磷酸葡萄糖肌醇糖蛋白基因,简称GPC3基因。GPC3缺失与多囊性肾发育不良有关[11]。虽然单基因与多基因缺陷均可最终导致肾发育不良,但其表型可能决定于最初受影响的基因调控失调或表达改变,如先天性梗阻性和囊性肾发育不良[12,13]。多囊性发育不良肾,在囊性上皮和间质中均有生长因子基因的改变。在小鼠梗阻性发育肾中,血管紧张素和转移生长因子呈过度表达[14]。研究证明,在后肾发育异常区,促进小管上皮出现囊性改变的因子Pax2和Bcl-2同样呈过度表达[15,16]。此研究可能会对各种形式肾发育不良的发病机制提供重要线索。

分子生药学论文

你们学校没有CNKI吗??那里面你要的文章用卡车装。

在医学领域中,药学专业学生需要学习基础医学相关知识,成为社会需要的创新型药学人才。下文是我为大家整理的药学的论文 范文 的内容,欢迎大家阅读参考! 药学的论文范文篇1 试谈生物制药新技术发展分析 [摘 要]生物技术药物(biotech drugs)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。 文章 分析了通过生物制药新技术的创立,可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。 [关键词]生物 制药 新技术 探析 生物技术药物(biotechdrugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。 一 生物制药技术 目前生物制药主要集中在以下几个方向: 1、肿瘤。 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。 2、神经退化性疾病。 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。 3、自身免疫性疾病。 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。 4、冠心病。 美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′sReopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。 基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。 二 生物制药发展分析 未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。 生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。 除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些 方法 可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。 除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。 各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用DennisNoble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。 药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康 保险 业产生重大影响。 三 结语 总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。 参考文献 [1] 邱芳菊,谈对制药新技术的探析,论文网,2009,08. 药学的论文范文篇2 浅谈我国生物制药产业现状分析及发展战略 【摘要】 本文对我国生物制药产业现状及发展战略进行了研究。指出了我国生物制药产业突出的问题,比如创新研发不足,融资的 渠道 不畅,混乱的产业格局。针对出现的问题,提出了相应的解决方法,有仿制、创新并举,拓宽融资的渠道,进行标准化的管理。全文结构紧凑,希望可以促进相关问题的研究。 【关键词】 生物制药;发展;创新 近20年来,以酶工程、细胞工程、发酵工程、基因工程为代表现代的生物技术得到了迅猛的发展,并日益改变和影响着人们的生活和生产方式。自上世纪的90年代以来,随着基因组等重大技术突破使生物技术产业化的进程明显的加快。当前,有三分之二的生物技术成果被应用于医药行业,用以对传统医药学进行改良或开发特色新药,由此引起医药工业重大的变革。 1 我国的生物制药业现状 总体概述 我国的生物制药业起步比较晚,经过20多年的发展,基因工程药物作为核心研制、开发与产业化己具备了一定的规模。当前我国注册生物技术类公司有400多家,已经取得基因工程类药物试产或者生产批文企业占到四分之一,主要分布于一些经济发达省、市及地区,比如北京、上海、浙江、广东、山东、江苏等地。近十几年来,我国开发了一大批新特效类药物,大大解决过去使用常规方法不能够生产或生产成本非常昂贵药品生产技术的问题,这些药品可分别用来防治诸如遗传性、心脑肺血竹、免疫性、肿瘤、内分泌之类严重威胁到人类健康疑难病症,并且在避免毒副等作用明显要优于传统类药品。 突出的问题 创新研发不足 在加入世界贸易组织以后,中国必须要遵守《同贸易有关知识产权协议》,于专利期内如果仿制某类新药,开发一方有权索要4- 10亿美金赔款。国际的大型生物制药类企业,研发的费用可占到销售收入20%以上,在这个方面我国的生物制药行业长期处在弱势的情况。 引发国内生物的制药业缺乏创新原因就在生物制药类企业于研发思想意识上比较落后,新药的研发过程沿用了学术工作方式,先从文献索引开始,在实际上仍然是走一条模仿的道路,缺少原创性。在一方面,科技研究所研究成果,多数还沉淀于实验室或保险柜;另一方面,比较于产品的创新,企业更加注重于现有产品改革及提高。这样的结果就是,创新的成果市场的转化率很低,离产业化、规模化的需求仍有非常大的距离。 融资的渠道不畅 作为高新技术类行业,生物制药的产业特点决定它需要前期资本的投入很大,因此除了企业的自身盈利积累及政府的资助以外,资本融通问题就变得至关重要。风险投资机构在生物制药投资方面发挥着重要的作用,但是因为投资的收益不理想,最近几年来投资大幅减少,由全面投资转变为重点投资。因为风险投资的明显导向作用,引起其他方面投资纷纷的缩水,这都严重阻碍我国的生物制药业发展。 混乱的产业格局 我国的生物制药业未形成一定的格局,产品生产进入了壁垒期。国内企业于市场风险的估计不足,对于一些国外畅销类产品,生产能力严重过剩,引发整个市场低水平的恶性竞争。除最初几个产品先上市企业得到盈利以外,大多企业难以获得大的毛利率,在些甚至处在亏损的边缘。 2 我国生物制药产业发展战略 仿制、创新并举 制药行业里能销售真正有价值产品只有一种:就是患者使用药物。创新不仅仅是个学术过程,更是个商业过程,企业创新首先应当从需求开始,进而寻找满足此种需求功能,由功能来确认技术构思,由技术构思来考虑技术方案,这样就可降低产品研发技术上的风险。在制药业方面,产业链分成上游创新的阶段、中游物质的分离阶段、产品的加工阶段、下游的 营销策划 阶段及渠道分销等。而生物药品研究开发的方式应该趋向一体化,从研究试验到生产到市场整个的过程要实行一体化,创建企业、研究机构一体化联合体,于技术、资金、市场、人才与管理互动式发展,相互渗透。 拓宽融资的渠道 公开的资本市场里融资可为产品处于成熟的阶段生物制药类企业提供资本的渠道,但对大部分处于初创期或种子期的企业由于缺少稳定的现金、现实商品化的产品、可靠偿债的能力,难以从间接的资本市场来获得支持(比如银行类金融机构提供债权性的资本),并且高额的负债所产生沉重利息负担会极大制约企业后继的发展。 国外风险基金在逐渐地进入中国,包含大型生物制药公司和技术公司在内跨国企业使用联盟等方式对我国的生物制药类企业进行投资,及我国自身的私募基金、风险基金等发展,还有呼之欲出创业板,于我国生物制药类产业发展将会起到强大推动作用。我国的生物制药类企业只有增强项目的运作能力,才会有效地融合金融和生物制药技术,形成围绕企业成长的全面的发展链,进而构成项目运作良好的循环。 进行标准化的管理 国际贸易中,欧美发达国家凭借自身的经济、技术优势,制定苛刻的技术法规、技术标准和技术认证的制度,于发展中国家出口交易产生极大限制作用。医药的贸易也成为欧美国家使用技术壁垒里最频繁领域之一。国内的制药企业环境安全上的意识还很薄弱,实行国际认证企业的数目也极少,这都会在以后的我国医药产品出口上形成“技术壁垒”。为此,国内的生物制药类企业需清醒地认识到: 进行标准化的管理是国内生物制药类企业突破技术的壁垒,提高商品出口根本的途径。积极引进、培养熟悉国际规则又有制药的实践 经验 专家型的人才,进而使企业达到国际的先进水平。 参考文献 [1]董文政,张仕:生物制药业何时是艳阳天.中证网.2010(7).10―14 [2]中国统计年鉴.北京:中国统计出版社.2009(4).20―40。 [3]朱少杰,蔡茂森:论技术贸易壁垒的抑制效应和我国出口行业的对策.国际贸易问题.2008(7).8―11。 [4]令狐谱,黄速建:并购后整合:企业并购成败的关键因素.经济管理.2009(3).3―5 药学的论文范文篇3 浅谈药品不良反应与安全用药 摘要:近年来关于药物不良反应的报道和讨论比较多,已引起了各方面的注意。临床上对药品的要求不仅仅局限于对疾 病的治疗作用,同时也要求在治疗疾病的同时,所使用的药品应当尽可能少地出现药物不良反应(ADR)。根据WHO 报告 ,全球死亡人数中有近1/7的患者是 死于不合理用药。在我国,据有关部门统计,药物不良反应在住院患者中的发生率约为20%,1/4是抗生素所致。 每年由于滥用抗生素引起的耐药菌感染造成的 经济损失就达百亿元以上。药品不良反应[1],是指合格药品在正常用法、规定剂量下出现的有害的和与用药目的无关的反应。随着医药科学的发展,临床上对药 品的要求不仅仅局限于防治作用,更注重使用过程中可能出现的不良反应,如何做好安全、有效的用药,已成为当务之急。合理用药始终与合理治疗伴行,是一个既 古老又新颖的课题,也是医院药学工作者永恒的话题。医院药学工作的宗旨是以服务患者为中心、临床药学为基础,促进临床科学用药,其核心是保障临床治疗中的 安全用药。目前公认的合理用药的基本要素:以当代药物和疾病的系统知识和理论为基础,安全、有效、经济及适当的使用药物。 【关键词】 合理的用药 引言: 随着社会的发展,如何安全、有效、合理的用药已成为社会关注的 热点 。近年来关于药物不良反应(adverse drug reaction,adr)的报道和讨论比较多,已引起了各方面的注意。临床上对药品的要求不仅仅局限于对疾病的治疗作用,同时也要求在治疗疾病的同时,所使用的药品应当尽可能少地出现adr。根据who报告,全球死亡人数中有近1/7的患者是死于不合理用药[1]。在我国,据有关部门统计,药物不良反应在住院患者中的发生率约为20%,1/4是抗生素所致。每年由于滥用抗生素引起的耐药菌感染造成的经济损失就达百亿元以上[2]。 合理用药始终与合理治疗伴行,是一个既古老又新颖的课题,也是医院药学工作者永恒的话题。医院药学工作的宗旨是以服务患者为中心、临床药学为基础,促进临床科学用药,其核心是保障临床治疗中的安全用药。目前公认的合理用药的基本要素:以当代药物和疾病的系统知识和理论为基础,安全、有效、经济及适当的使用药物[2]。 下面结合临床工作实践,并结合文献,浅谈一下临床常见的药品不良反应与安全用药问题。 一、抗生素滥用,导致药物的不合理应用 现如今医疗纠纷频发、医源性或药源性事件居高不下、医疗以及用药成本过高等,已成为多数国家、地区面临的问题,我国在这些方面也有许多相似之处。合理用药的实践步履艰难,进展迟缓,远未引起人们的足够重视。实际上,药物不良反应已成为危及人类健康的主要杀手,而抗生素的滥用现象在我国临床中已非常普遍。有资料表明,我国三级医院住院患者抗生素使用率约为70%,二级医院为80%,一级医院为90%[3]。抗生素的滥用,不仅使药物使用率过高、导致医药费用的急剧上涨,同时也给临床治疗上带来了严重的后果。现在,很少有医生对抗生素进行过系统、全面的了解,使用的盲目性很大,在选择抗生素时不加思考,不重视病原学检查,迷恋于“洋、新、贵”,盲目的大剂量使用广谱抗生素,或几种抗菌药同时应用,致使大量耐药菌产生,使难治性感染越来越多,医疗费用也越来越高。临床上很多严重感染者死亡,多是因为耐药感染使用抗生素无效引起的。adr以抗生素位居首位。 比如说上呼吸道感染,有90%以上是由病毒引起的,但临床上使用抗生素的却不在少数。滥用的后果是在宏观上造成细菌的抗药性增强,抗生素的效力降低 甚至丧失,最终导致人类无药可用;在微观上会对患者的身体造成药源性损害。由于人体内部有许多菌群,正常情况下他们相互制约,形成一种平衡,抗生素的滥用就可能对某些有益菌群造成破坏,使一些有害菌或病毒乘虚而入导致二重感染甚至死亡。另外,临床分科过细,医师缺乏正确的抗菌药物知识;正确的药品信息获取困难;医师缺乏全面的药学知识等,也是导致用药错误的重要原因。长时期以来,人们已经习惯把抗生素当作家庭的常备药,稍微有些头痛脑热就服用;而有一些患者主动要求用好药、贵药,就更造成了资源浪费和细菌耐药的发生。 由此看出,合理用药不仅仅是医学问题,也不仅仅是临床医师需要注意的问题。要真正做到合理用药,医生、患者、药师、药品管理部门需要互相协作才能得以实现。 二、提高自我保护意识,防止药品不良反应的发生 导致adr的原因十分复杂,而且难以预测。主要包括药品因素、患者自身的因素和其他方面的因素。 药品因素 (1)药物本身的作用:如果一种药有两种以上作用时,其中一种作用可能成为副作用。如:麻黄碱兼有平喘和兴奋作用,当用于防治支气管哮喘时可引起失眠。(2)不良药理作用:有些药物本身对人体某些组织器官有伤害,如长期大量使用糖皮质激素能使毛细血管变性出血,以致皮肤、黏膜出现瘀点、瘀斑。(3)药物的质量:生产过程中混入杂质或保管不当使药物污染,均可引起药物的不良反应。(4)药物的剂量:用药量过大,可发生中毒反应,甚至死亡。(5)剂型的影响:同一药物的剂型不同,其在体内的吸收也不同,即生物利用度不同,如不掌握剂量也会引起不良反应。 患者自身的原因 (1)性别:药物性皮炎男性比女性多,其比率约为3∶2;粒细胞减少症则女性比男性多。 (2)年龄:老年人、 儿童 对药物反应与成年人不同,因老年人和儿童对药物的代谢、排泄较慢,易发生不良反应;婴幼儿的机体尚未成熟,对某些药较敏感也易发生不良反应。调查发现,现60岁以下的人,不良反应的发生率为(52/887),而60岁以上的老年人则为(113/713)[4]。 (3)个体差异:不同人种对同一药物的敏感性不同,而同一人种的不同个体对同一药物的反应也不同。(4)疾病因素:肝、肾功能减退时,可增强和延长药物作用,易引起不良反应。 其他因素 (1)不合理用药:误用、滥用、处方配伍不当等,均可发生不良反应。 (2)长期用药:极易发生不良反应,甚至发生蓄积作用而中毒。 (3)合并用药:两种以上药物合用,不良反应的发生率为,6种以上药物合用,不良反应发生率为10%,15种以上药物合用,不良反应发生率为80%[5]。 (4)减药或停药:减药或停药也可引起不良反应。例如治疗严重皮疹,当停用糖皮质激素或减药过速时,会产生反跳现象。 各种药品都可能存在不良反应,中药也不例外,只是程度不同,或是在不同人身上发生的几率不同。出现药品不良反应时也不必过于惊慌,患者用药时,一定要仔细阅读 说明书 ,如果出现了较严重或说明书上没有标明的不良反应,要及时向医生报告。 三、怎样做到安全用药 (1)不能轻信药品 广告 。有些药品广告夸张药品的有效性,而对药品的不良反应却只字不提,容易造成误导。 (2)不要盲目迷信新药、贵药、进口药。有些患者认为,凡是新药、贵药、进口药一定是好药,到医院里点名开药或在不清楚自己病情的情况下就到药店里自己买药,都是不恰当的。 (3)严格按照规定的用法、用量服用药物。用药前应认真阅读说明书,不能自行增加剂量,特别对于传统药,许多人认为多吃少吃没关系,剂量越大越好,这是不合理用药普遍存在的一个重要原因。 (4)药品消费者应提高自我保护意识,用药后如出现异常的感觉或症状,应停药就诊,由临床医生诊断治疗。这里需要告诫药品消费者的是,有些人服用药品后出现可疑的不良反应,不要轻易地下结论,要由有经验的专业技术人员认真地进行因果关系的分析评价。 随着人们对健康和生活质量问题的日益关注,药品不良反应的危害已经越来越引起全社会的重视。国家正在建立、健全药品不良反应监测报告制度,尽量避免和减少药品不良反应给人们造成的各种危害。因此,人们应抱着无病不随便用药,有病要合理用药,正确对待药品的不良反应的态度,正确的服用药物和保管药物,不断提高用药水平,从而达到真正的安全、有效、经济、适当地合理用药。 参考文献 1 徐年卉,林国生,付洁,等.合理应用抗菌药物管理工作的经验探讨.中华医院感染学杂志,2014,12(2):143-144. 2 唐镜波.合理用药的评价与实践要点.全军临床合理用药研讨班论文摘要汇编,1990,64. 3 刘振声,金大鹏,陈增辉.医院感染管理学.北京:军事医学科学出版社,2014,314. 4 孙定人.药物不良反应,第2版.北京:人民卫生出版社,1998,103. 猜你喜欢: 1. 电大药学论文范文 2. 药学论文范文 3. 大专药学毕业论文范文 4. 药学毕业论文范文 5. 药学大专毕业论文范文

给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

<分子生药学论文>

分子生药学是研究生物分子在药物发现、开发和应用方面的学科领域。在道地药材中,分子生药学可以应用于以下方面:

药用成分鉴定:道地药材通常被用作传统药物的原料,其中含有各种活性化合物,如生物碱、多糖、黄酮类等。分子生药学可以通过分析和鉴定道地药材中的化学成分,识别出具有药理活性的化合物。

图片源于网络

药效活性研究:通过分子生药学的技术手段,可以对道地药材中的化合物进行药效活性研究。这包括通过体外和体内实验评估药物的生物活性、药理作用、抗氧化性等。

药物开发与优化:分子生药学在道地药材中的应用还包括药物开发和优化。通过分析道地药材中的活性成分,可以设计和合成具有更好活性和选择性的药物分子。

药物安全性评估:分子生药学可以帮助评估道地药材中的化合物的毒性和安全性。通过进行毒理学和安全性研究,可以确定药物的副作用、毒性潜力和用药安全性。

图片源于网络

总的来说,分子生药学的应用可以帮助深入了解道地药材中的化学成分、药理作用和药效活性,进而促进传统药物的开发和应用。这有助于挖掘和利用道地药材中的有效成分,推动传统药物的现代化和合理应用。

生药学在生药资源开发利用方面的重要意义 【摘要】生药学是一门专门研究生药资源的学科,通过应用现代科学技术和多学科理论知识来研究生药的基源、有效成分、生产采制以及对生药进行鉴定等。促进药用资源的可持续开发利用,扩大药源,更好的造福人类。 【关键词】药用植物 生药学 资源 指纹图谱 生药学是应用本草学、植物学、动物学、化学(包括植物化学、药物分析化学、生物化学等)药理学、中医学、临床医学和分子生物学等学科的理论知识和现代科学技术来研究生药的基源、鉴定、有效成分、生产、采制、品质评价及资源可持续开发利用等的一门学科。我国劳动人民数千年来在与疾病作斗争中不断积累和丰富起来的药物学知识,汇集成众多本草著作,是今天中药科学继承和发展的基础,也是现在生药学的重要理论基础和资料库[5]。对这些宝贵的遗产和财富,应结合现代生药学所运用的科学技心脑血管方面的疾病具有显著疗效。野生丹参资源已不能满足药材市场的需求,目前丹参多为栽培,其栽培面积日益扩大。通过选取丹参根和根茎做水溶性蛋白质的凝胶电泳分析,以观察各地野生品种和栽培品种所含蛋白品种所含蛋白质的差别[1]。从而比较野生品种和栽培品种的要效的差别,有助于扩大药源。 3.生药学在前沿医学研究中的作用 目前国际上在生药学方面的研究成果也是十分频繁。在攻克癌症的斗争中,在生药学方面的研究也取得很好的成果。于2002 年7 月召开的全美第43 届生药学年会代表了全球生药学研究的新趋势。现任职美北卡大学药学院天然产物实验室的美籍华人教授———李博士做了题为“从天然产物先导物设计和发现新药的现行进展”报告。该实验室的总体研究方向就是已经发现和正在发展具有生物活性的天然产物及其结构类似物作为临床治疗药物。源自天然中草药的传统中医药学是一个研制有效化疗剂新先导化合物的重要来源。一种代号为GL2331 的半合成表鬼臼吡喃葡萄糖甙,是天然产物鬼臼毒素被人工设计合成和研发的,目前作为抗癌药正在进行Ⅱ期临床试验。这些先导化合物及其它研究产生的先导化合物已经证明无论是作为深入一步的修饰模板,或是在作用机理研究手段方面,将在新药设计和研制方面极有价值[3]。 4.生药学在药物资源保护方面的作用 药用植物资源对于我国医药事业的发展具有重要的意义,特别是对中医药及民族医药的发展起到至关重要的作用。 药用植物资源的丰富,一方面会为中医药及民族医药事业提供必要的物质基础和资源储备。另一方面,也为它们进行不断的科研开发及创新活动提供了更大的发展空间.。当前,部分地区在开发利用药用植物资源方面,由于片面追求经济利益,忽视了药用植物资源自身的生态增长规律,出现了过度利用、盲目开发等不合理的现象,因而导致了大量药用植被生态被破坏的严重问题.。从植物学、生态学理论角度来看,外界干扰会对植物群落的组成、结构和动态产生影响;但是外界干扰并非必然破坏生态系统,它主要取决于人类活动的干扰强度、作用频率、持续时间及干扰范围等因素。 有时适度干扰从某种意义上来说能够增加植物多样性、促进植被更新,其结果可能会促进生态系统趋向稳定. 基于这种理论,我们有必要对人类干扰植物资源的活动开展相应深入的生态学研究,以期得出相关的科学结论,进而指导对于药用植物资源的开发利用活动,做到既保持生态平衡,又能够合理利用,为药用植物资源的可持续发展提供理论依据[4]。 5.结语 药用资源是人类生存不可缺少的重要资源,通过生药学方面的研究,将更好的开发药用资源,扩大资源储备量,同时对药用资源的保护方面也有重要的指导作用,促进药用资源的可持续的开发和利用。 【参考文献】1.赵华英,李允尧等不同产地不同丹参品种的蛋白电泳观察,山东大学学报(医学版), ,2002年6 月第40 卷第3 期。 2.彭素琴,刘郁林,金银花研究进展.赣南师范学院学报,2005 年第六期 3.杨顺楷,生药学的最新动态(一),中国科学院成都生物研究所,精细与专用 化学品,2003 年第23 期 :6—7 4.石 莎,周宜君,冯 莎,冯金朝,我国西北地区药用植物多样性,中央民族大学学报(自然科学版),2006 年2 月第15 卷第1 期 5.阎玉凝。对中药生药学重点学科内涵外延的探讨,中医教育ECM 第24 卷,2005年5月第3 期,42—43 6 赵君峰,白志川,中药材金银花的生药学与高效液相指纹图谱研究 ,西南大学硕士学位论文,2008年5月 9---11

研究对象和研究方法。1、研究对象:生药学是研究天然药物的来源、性质、制备、质量控制、药效和药理作用等方面的学科;分子生药学则是研究药物分子结构、作用机制、代谢途径、药物相互作用等方面的学科。2、研究方法:生药学主要关注的是天然药物的化学成分、药效和药理作用等方面的研究,以及天然药物的提取、纯化、制剂等方面的技术研究;分子生药学主要关注的是药物分子的结构和作用机制等方面的研究,以及药物设计、合成、筛选等方面的技术研究。

相关百科

热门百科

首页
发表服务