普通正常的聚苯乙烯是无毒的。
聚苯乙烯是指由苯乙烯单体经自由基加聚反应合成的聚合物。它是一种无色,无毒,无臭透明的热塑性塑料,具有高于100℃的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。
扩展资料:
聚苯乙烯(PS)包括普通聚苯乙烯,发泡聚苯乙烯,高抗冲聚苯乙烯及间规聚苯乙烯。普通聚苯乙烯树脂,似玻璃状脆性材料,其制品具有极高的透明度,透光率可达90%以上,电绝缘性能好,易着色,加工流动性好等。聚苯乙烯易被强酸强碱腐蚀,可以被多种有机溶剂溶解,如丙酮、乙酸乙酯。不抗油脂,受到紫外光照射后易变色。
通常的聚苯乙烯为非晶态无规聚合物,具有优良的绝热、绝缘和透明性,长期使用温度0~70℃,但脆,低温易开裂。此外还有全同和间同以及无规立构聚苯乙烯。全同聚合物有高度结晶性,间同聚合物有部分结晶性。
参考资料来源:百度百科-聚苯乙烯
聚乙烯高温时所产生的气体,对人体健康是不会产生太大伤害的。
乙烯的结构就是碳和氢,燃烧时产物也就是二氧化碳和水,黑烟只是燃烧的不充分,对人没什么危害,只要保证所处的地方通风就可以。
注意:聚氯乙烯高温燃烧产生的气体可以引起中毒。
聚乙烯为典型的热塑性塑料,是无臭、无味、无毒的可燃性白色粉末。成型加工的PE树脂均是经挤出造粒的蜡状颗粒料,外观呈乳白色。其分子量在1万一loa万范围内。分子量超过10万的则为超高分子量聚乙烯f UHMWPE3。
分子量越高,其物理力学性能越好,越接近工程材料的要求水平。但分子量越高,其加工的难度也随之增大。聚乙烯熔点为100-130C·其耐低温性能优良。在-60℃下仍可保持良好的力学性能,但使用温度在80~110℃。
扩展资料:
聚乙烯性质
1、聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质腐蚀,但硝酸和硫酸对聚乙烯有较强的破坏作用;
2、聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,炭黑对聚乙烯有优异的光屏蔽作用。受辐射后可发生交联、断链、形成不饱和基团等反映。
由乙烯均聚以及与少量α-烯烃共聚制得的乳白色、半透明的热塑性塑料。密度~,按密度区分有低密度聚乙烯(也包括线性低密度聚乙烯)、超低密度聚乙烯等。无味、无毒。耐化学药品,常温下不溶于溶剂。耐低温,最低使用温度-70~-100℃。
电绝缘性好,吸水率低。物理机械性能因密度而异。工业上低密度聚乙烯主要采用高压(110~200MPa)、高温(150~300℃)自由基聚合。
其他则用低压配位聚合,有时同一套装置可生产密度~的聚乙烯产品,称全密度聚乙烯工艺技术。聚乙烯可加工制成薄膜、电线电缆护套、管材、各种中空制品、注塑制品、纤维等。广泛用于农业、包装、电子电气、机械、汽车、日用杂品等方面。
参考资料来源:百度百科-聚乙烯
结合实际,仰望明天就懂了
你好,看看下面说的吧!聚苯乙烯发泡餐具质优、洁净、卫生、价廉,给人们生活带来极大方便,而且杜绝了因消毒不严而引起交叉感染的事故,长期以来一直是快餐业优选的包装容器。但由于其在用后不易在自然环境中自行降解,加上管理不善以及人们环保意识淡薄,其废弃物被随意丢弃的现象相当普遍,从而给市容景观、生态环境造成了严重的负面影响,被形象的比喻成“白色污染”,由此引发了新的环境问题。 近年来,“白色污染”日益严重,已引起社会极大的关注和强烈的反响,铁路沿线、旅游景点、江河湖泊以及大中城市的城乡结合部等地区的“白色污染”尤为受到各级政府和百姓的重视,同时也引起了中央国务院领导的高度重视,要求尽快治理。 对此,作为聚苯乙烯发泡餐具生产主要归属部门的中国塑料加工行业和中国包装行业也十分重视,均以积极的态度,以科技进步为出发点,加强回收利用技术和可降解技术的研究,以缓解或减轻其废弃物对环境的污染。 近一年来聚苯乙烯发泡餐具问题的严重性不断升级,由最初被指责为“白色污染”上升达到比“核电事故或是石油泄漏还严重的环境灾害”(在去年底的一次全国方便食品包装替代工作领导小组成立大会上,北京XXX公司在会议散发的绿色宣传资料卷首语中曾这样提出:“本世纪末最大的人为环境灾害,不是切尔诺贝利的核电站爆炸,也不是海湾战争导致的石油泄漏,而是一只只廉价的白色发泡塑料餐具”);而后又从环境灾害,升级到其在65oC以上时会放出强致癌物二恶英(dioxin)、和含有多种有害毒素,最近曾有人声称“以前人们通常认为禁止一次发泡塑料餐具是为了环境保护,经过专家最新研究发现,发泡塑料在高温下还会产生有毒物质,“禁白”实际上是“禁毒”。对聚苯乙烯发泡餐具作了有毒物质的定性,是应该有充足的科学根据,不知提出的最新研究专家是何人,其研究结果是否得到世界卫生组织认可并作为了结论。如果是真的属于有毒物质,则问题要简单多了,国家卫生部门出于对人民健康的负责对会使人致癌或含有对人体有毒的物质进行明文禁用的。另外聚苯乙烯发泡餐具在国内外盛行了30多年,对此关系到人们健康的如此重大的问题,世界卫生组织也不会置若罔闻的。据有关资料报导,目前世界上聚苯乙烯餐饮具产量仍在不断增长。 近日来一些人又多次在某些会议上、新闻媒体上将这个错误的信息炒得沸沸扬扬,小小的聚苯乙烯发泡餐具引发如此多问题,值得人们深思。 关于聚苯乙烯发泡餐具与二恶英的问题,去年XX报曾发表过一篇“聚苯乙烯泡沫餐具拜拜”的报告后,曾引起了极大的震惊,为此我们查阅了大量资料并向有关专家咨询后,进行了澄清和正确的舆论报导,但现在仍有些人继续散播这个错误的消息,今年7月底上海召开的2000年上海第一届防治“白色污染”研讨会上,有人在会上继续散布聚苯乙烯发泡餐具会放出二恶英的错误信息,当即受到与会者据论反驳后,还愤愤不平地到网上找所谓的根据,这几页复印资料便是他们根据。该资料对德国、美国、何兰、瑞典及日本二恶英的发生源中纸浆污染、黑液锅炉,美国检出,瑞典为4~6gTEQ/y,日本为3gTEQ/y,资料中却没有提及聚苯乙烯发泡餐具。最近北大和化工大学的陈教授等从二恶英的生成条件和机理进行了详尽的分析,对聚苯乙烯发泡餐具不会产生二恶英的问题已比较清楚。 我主要从聚苯乙烯发泡餐具生产过程和使用环节是否会产生或沾染二恶英的可能性进行简单的分析以及对聚苯乙烯含有害物质的问题谈谈个人的认识。 聚苯乙烯发泡餐具生产和使用过程产生或沾染二恶英可能性分析
对生育有一定的影响聚乙烯和聚丙烯等是用来作食品包装袋的材料,无毒。 聚丙烯虽无毒,但增塑剂、色母料都有一定的毒性。 无毒的塑料袋是用聚乙烯、聚丙烯和密胺等原料制成,可以用来包装食品。聚氯烯制成的塑料袋有毒,不能做食品包装袋使用
聚苯乙烯泡沫板又名泡沫板、EPS板是由含有挥发性液体发泡剂的可发性聚苯乙烯珠粒,经加热预发后在模具中加热成型的白色物体,具有微细闭孔的结构特点。聚苯乙烯泡沫板表面均匀平整,具有完全闭孔式的内部蜂窝结构,优越的保温、隔热(导热系数)、隔音、防潮性能,以及高压、轻质、不吸水、不透气、耐磨、不降解的特性;板材用美工刀可随意切割,广泛用于屋面、墙面、地面、冷库等工程。聚苯乙烯泡沫板的性能特点:1、聚苯乙烯泡沫板质轻。我国标准规定采用容重为18~22kg/m3的EPS板,欧洲仅采用15kg/m3的EPS板;2、聚苯乙烯泡沫板导热系数低。由于其充满空气的团孔结构,阻止了空气的传播,使其导热系数在一下;3、由于聚苯乙烯泡沫板板材中98%的空间充斥着空气,有足够的能力通过改变和回复形状对外界冲击力进行缓冲,抗冲击能力良好;4、低吸水性。研究证明,湿度会影响材料的材料的热性能和力学性能,材料的低吸水性有助于保持这些性能;5、聚苯乙烯泡沫板可回收使用。其回收程度是塑料中最高的;6、全生命周期的能耗在塑料制品中最低的。
不知道你是要本科毕业论文还是硕士研究生的毕业论文,两者等级都不一样,要求字数等也不一样,你可以先看下学校电子图书馆里有没有存有往届毕业生的毕业论文,如果没有,你百度搜:普刊学术中心,上面也有很多毕业论文范文写作教程等资料可以学习下
导语:泡沫塑料是我们平时生活中很常见的一种物质,就拿从前我们所使用的一次性的饭盒来说,它就是使用泡沫塑料制作的,但是由于食品安全问题呢,现在不提倡使用这种类型的饭盒,除了在一次性饭盒上有它的使用之外,它的应用是非常广泛的,下面小编的文章呢会为大家介绍到。当初人们反对使用泡沫塑料的是因为它本身含有的化学物质,这种化学物质称为聚苯乙烯,这种名词对很多人来说比较陌生,下面小编就为大家介绍一下聚苯乙烯泡沫塑料。
聚苯乙烯泡沫塑料,它主要就是用聚苯乙烯树脂加入发泡剂等一些添加剂合制而成的,它的使用非常广泛,原因大多是因为它本身的优势所在。
聚苯乙烯泡沫塑料的优点
聚苯乙烯泡沫塑料是一种缓冲性材料,目前为止,在市场上,它的使用率是最高的。并且它的闭孔结构的设计让它本身的吸水性减小,并且拥有了优良的抗水性。
不仅如此,聚苯乙烯泡沫塑料的密度小,所以比较容易加工处理、模塑成型,并且它的着色性比较好,能够很好的适应温度。由于它的结构比较均匀,所以在一些外墙保温系统中,它的占有率就比较高了。
聚苯乙烯泡沫塑料虽然好,但是在燃烧之后,还是会产生聚苯乙烯的化学物质,会造成环境污染。所以在使用之后,也要懂得回收利用和处理的办法。
优点
1、聚苯乙烯泡沫板密度系数小,抗冲击能力良好,有足够的能力通过改变和回复形状对外界冲击力进行缓冲;
2、具有独立的气泡结构,小面积的损伤不会影响到整面墙体;
3、其表面吸水率低,防渗透性能好,能够有效避免墙面受潮后发霉、脱落等墙面问题;
4、不受气温影响。高温时,聚苯乙烯泡沫板不会因温度过高而熔化流淌,低温时也不会因为温度过低而发生脆裂现象;
5、聚苯乙烯泡沫是可回收材料,能够回收使用,其回收程度是塑料中最高的;
6、生产工艺中不使用氟利昂;
7、全生命周期的能耗在塑料制品中最低的。
缺点
1、施工需要挂网,施工过程繁琐,工期长;
2、易燃、燃烧后产生有毒气体。普通的聚苯乙烯泡沫保温板容易燃烧,燃烧产生的烟雾中有毒性,即便添加阻燃剂之后,燃烧性也仅能达到B级;
3、材料强度差,容易产生开裂现象、保温层脱落现象比较普遍;
4、聚苯乙烯泡沫保温板由于其自身强度有限,承重能力差,贴面砖时需要进行加强处理;
5、聚苯乙烯泡沫保温板质量不稳定,因为材料出厂前需要放置一段时间,经过一段成熟期才可以使用,如果未熟化彻底,质量将无法得到保证,导致泡沫板收缩开裂。
回收利用及处理方法
一.减容后造粒:聚苯乙烯泡沫塑料可熔融挤出造粒制成再生粒料,但因此体积庞大,大便运输,通常在回收时先需减容。方法有机械法,溶剂法和加热法。
二.粉碎后用作填料:聚苯乙烯泡沫塑料制品经粉碎后可用作填料,制成各种制品。
①重新模塑成泡沫塑料制品
②混凝土复合板制品
③石膏夹芯砖
④用作沥青增强剂
⑤用作土壤改性剂
三.裂解制油或回收苯乙烯:废聚苯乙烯发泡塑料裂解制油方法的装置如下
废聚苯乙烯泡沫塑料预处理热处理减容催化裂解精馏苯乙烯
四.其他:废聚苯乙烯泡沫塑料可用于制造涂料和粘接剂等
①涂料:可发性聚苯乙烯泡沫塑料粉碎后加入适当的溶剂可制成漆,
聚苯乙烯泡沫塑料有用可发生聚苯乙烯珠粒模塑成型。用于家用电器等包装或冷冻食品包装的泡沫塑料;也有少数方便面碗采用可发性聚苯乙烯珠粒注塑而成。这些塑料制品体积庞大,学杂费量大,其回收利用在中国受到特别重视。
聚苯乙烯泡沫塑料回收利用主要途径有:减容后造粒,粉碎后用作各种填充材料,裂解制油或回收苯乙烯和其他。
一.减容后造粒:聚苯乙烯泡沫塑料可熔融挤出造粒制成再生粒料,但因此体积庞大,大便运输,通常在回收时先需减容。方法有机械法,溶剂法和加热法。
二.粉碎后用作填料:聚苯乙烯泡沫塑料制品经粉碎后可用作填料,制成各种制品。
①重新模塑成泡沫塑料制品
②混凝土复合板制品
③石膏夹芯砖
④用作沥青增强剂
⑤用作土壤改性剂
三.裂解制油或回收苯乙烯:废聚苯乙烯发泡塑料裂解制油方法的装置如下
废聚苯乙烯泡沫塑料预处理热处理减容催化裂解精馏苯乙烯
四.其他:废聚苯乙烯泡沫塑料可用于制造涂料和粘接剂等
①涂料:可发性聚苯乙烯泡沫塑料粉碎后加入适当的溶剂可制成漆
以上就是小编介绍的关于聚苯乙烯泡沫塑料的相关知识点,希望能对用户们有所帮助。
我建议你可以到百度文库去看看,哪里里面有很多文献论文的!
豆丁网有这个水性涂料的研究进展道客巴巴有这个水性丙烯酸酯涂料毕业论文
大专国际贸易毕业论文技术标准在国际贸易中的重要作用摘要:论述了技术壁垒已逐步取代关税和其他非关税壁垒,成为当今国际贸易壁垒的主体,并将长期存在和不断发展;探讨技术标准在国际贸易中发挥的重要作用;提出加强我国技术标准体系建设,完善和制定我国技术标准的建议。关键词:技术标准,技术壁垒,国际贸易随着经济全球化和贸易自由化的发展,特别是加入WTO以后,我国国际贸易更加频繁,企业出口量快速增长。然而,我国企业在享受着贸易自由化所带来便利的同时,也深深感受到来自技术标准的障碍越来越大,相当数量的产品频繁遭遇国外以技术标准为主的技术壁垒,出口纷纷受阻,有的甚至被迫退出了市场。调查表明,2002年我国71%的出口企业、39%的出口产品受到国外技术壁垒的限制,造成损失达170亿美元,相当于当年出口额的。以技术标准为主的技术壁垒已成为当今国际贸易的主要壁垒。1国际贸易壁垒发展的趋势当今国际贸易中贸易壁垒正在发生结构性变化,技术壁垒成为国际贸易壁垒的主体国际经济交往中,影响国际贸易的主要因素是贸易壁垒。国际贸易壁垒分为关税壁垒和非关税壁垒,技术壁垒就是非关税壁垒的一种主要形式。技术壁垒主要是以技术为支撑,指一国以国家安全、保障人类健康和安全、保护生态环境、防止欺诈行为、保证产品质量等为由采取的一些技术性措施。技术壁垒以技术标准、技术法规、合格评定程序等形式出现,其主要内容和主要形式就是技术标准。标准与知识产权技术壁垒具有合理性、隐蔽性、复杂性、灵活性等特点。当今国际贸易中,关税壁垒的作用越来越受到限制,贸易保护主义的天平从关税壁垒倒向非关税壁垒一侧,关税壁垒逐步为非关税壁垒所取代。而在非关税壁垒中,如直接采用进口配额、进口许可证等措施限制进口,又常常受到国际舆论的谴责,而且易遭到对等的报复,因而也越来越少。但是,技术壁垒因其具有合理性、隐蔽性,发达国家往往利用它进行贸易保护,从而使其逐步成为取代关税和其他非关税壁垒的新的贸易壁垒,也成为发达国家实行贸易保护主义的主要手段和形式,并成为影响21世纪国际贸易发展的重要因素。20世纪70年代影响我国国际贸易的非关税壁垒中,只有10%~30%是技术性贸易壁垒,进入90年代后,这一比例逐步上升。目前,我国至少有三分之二的进出口企业受到国外技术壁垒的影响。技术壁垒将长期存在并不断发展技术壁垒是国际贸易发展到一定阶段的必然产物,为适应社会进步、满足经济发展和人类自身保护的需要,设置技术壁垒来维护贸易秩序、促进发展已经得到WTO的认可,具有合法性。同时,随着各国技术标准的国际化,一部分技术壁垒将会被消除,但新的技术壁垒随着科技的发展和安全环保的要求将不断产生和不断更新,这就决定了技术壁垒将在国际贸易中长期存在和不断发展。不但如此,一些发达国家常以各种“标准”为理由,以专利技术为盾牌,凭借其技术优势不断制定苛刻的技术标准,并且利用其在国际标准机构中的领导权尽可能地将有利于本国的技术法规、技术标准、检测方法等纳入国际标准,设置和利用技术标准对其他国家外贸出口进行限制,进而借助技术壁垒削弱发展中国家的成本优势,完成了由简单的关税壁垒向复杂的技术壁垒转变的过程。这也是技术壁垒将在国际贸易中长期存在和不断发展的一个因素。2技术标准在国际贸易中的重要性当今国际贸易中,围绕技术壁垒的贸易纠纷呈现不断增加的趋势。表面上是贸易纠纷,其背后的实质就是技术标准之争。技术标准作为技术壁垒的主要形式,近年来在国际贸易中凸现出其重要的作用。在传统观念中,技术标准主要是为了保证产品的互换性和通用性。今天,技术标准远远走出了零部件的通用和互换问题的概念,而更多地成为一个国家实行贸易保护的技术壁垒,甚至成为制约一个国家经济发展和国际竞争力的重要因素。技术标准作为技术壁垒在国际贸易中发挥着双重作用在国际贸易中,技术标准作为检验产品是否符合标准和法规的依据,具有促进贸易发展的作用和作为仲裁依据的仲裁作用,但一旦成为技术壁垒,它更多的是起到保护作用或壁垒(或垄断)作用。(1)保护作用依据《技术性贸易壁垒协议》即TBT协议,各国可以根据自己的实际情况,如语言、地域、民族习俗等,从自身利益出发,制定符合本国国情的技术标准。这种技术标准能够保护国家安全、防止欺诈行为、保护人身健康安全、保护动植物生命健康、保护环境,同时保护本国的民族工业和国家经济利益,从而对自己构成贸易保护,具有积极的保护作用。(2)壁垒或垄断作用一些国家利用自己经济、技术、专利等优势,制定一些苛刻或需用到专利技术的技术指标,故意或无意地限制别国产品进口,或垄断了某行业的技术,这时技术标准就起了消极的壁垒或垄断作用。当今这种作法往往被发达国家所利用,发展中国家成为其受害者。如欧共体的OKO—生态纺织品标准100中对服装和纺织品中的某些物质的含量要求高达PPb级,对苯乙烯的要求不超过5PPb,乙烯环乙烷不超过2PPb,这无疑给发展中国家的纺织品出口贸易造成了很大的难度。一方面由于技术有限,发展中国家很难控制到PPb级,另一方面由于经济、实验条件有限,而无法检测出PPb级的物质。如果让发达国家的检测机构检测费用相当昂贵,成本必然增加。又如CDMA移动通信领域的国际标准,其背后是美国高通公司的1 400多项专利,企业在采用这个标准的同时也不得不采用他的专利。在很多情况下,技术标准同时具有“双刃性”,既有积极的保护作用,又有消极的壁垒作用和垄断作用,对我是保护作用,对你则是壁垒或垄断作用。在一定程度上,技术标准已上升为制约国家经济发展和国家经济竞争力的一个重要因素当今社会,谁掌握了技术标准的制定权谁就能够有效地掌握竞争的主动权,获得最大的经济利益。‘得标准者得天下’就是这个意思。因为技术标准往往决定一个产品甚至一个行业的技术路线,技术标准一旦制定,大家只能沿着这条技术路线走,并且能影响相关行业。特别是当标准中隐含着专利技术并上升为国际标准时,它所带来的利益直接体现了国家的利益。去年底,我国信息产业部颁布了自己制定的WAPI无线局域网标准以来,在中美IT界掀起了滔天巨浪,其实质就是以美国大企业为主导的Wi-Fi无线局域网标准与我国政府倡导的WAPI无线局域网的标准之争。如近年来我国DVD行业的专利费事件,由于DVD的国际标准由欧美等国制定和控制,中国企业生产的每件产品都需要缴纳一定的专利费用。这些就是“技术标准”的威力!正如科技部部长徐冠华所说:“当今世界,谁掌握了标准的制定权,谁就一定程度上掌握了技术和经济竞争的主动权”。所以说,在一定程度上技术标准已不单纯是技术问题,它已上升到国际间经贸关系的高度,成为一个制约国家对外贸易和国家经济竞争力的重要因素。 3加强我国技术标准体系建设,完善和制定我国技术标准既然以技术标准为主要内容和主要形式的技术壁垒已逐步取代关税和其他非关税壁垒,成为当今国际贸易壁垒的主体,并将长期存在和不断发展,而技术标准在当今国际贸易中又发挥着重要的作用,那么我们就应该充分认识和重视技术标准,建设有利于我国国际贸易、增强我国国际竞争力的技术标准。即在鼓励企业尽快采用国际先进的技术标准,积极参与国际标准化活动和国际标准的制修订工作,努力将我国国家标准纳入国际标准的同时,完善和制定我国技术标准。当前许多发达国家都将目光转向标准,通过技术标准中技术要素的确立和技术指标的设立,纷纷建立了自己的技术贸易壁垒体系。我们也应该充分利用TBT协议中有限干预的原则和对发展中国家的优惠政策,在促进技术进步的前提下,完善和制定我国的技术标准,建立自己的技术壁垒体系;将一些我国企业能够达到而外国企业难以达到的和我国国情特有的技术指标制定成国家标准,同时合理地保护民族工业。对于一个国家来说,没有自己的技术标准体系,没有技术壁垒,就如同一座不设防的城。目前,我国绝大多数产品实际上是按照西方国家特别是美国的技术标准进行生产的,短期来看是可以节约开发成本,迅速扩大市场份额;但从长远的角度看,这种“跟进”的做法始终会让企业沦为别人的“打工仔”,甚至威胁国家的安全和利益。况且,我们拥有巨大的市场,当我们制定自己的技术标准后,一些外国企业为了保证自己不被中国的市场抛弃就会倾向于接受我国的技术标准。一些小的国家也会被吸引到我国的技术标准下,特别是亚洲的周边国家。因为这些国家的市场小,难以形成独立的规模市场效应,因此就必须要依赖那些市场潜力巨大的国家。这些国家的企业为了能够在中国市场巨大的商机里面获得机会,就必然会采用我国的技术标准。如此一来,我国的技术标准也会被大家公认,即使成不了国际标准,也会成为公认的事实标准,从长远来看对我国的国际贸易也有着重大作用。参考文献1叶柏林.如何应对国际贸易中的技术壁垒.中国标准化,20012广东质量技术监督局网, 3新浪网,
创作思路:
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:提出问题-论点;分析问题-论据和论证;解决问题-论证方法与步骤;结论。
正文:
采用丰富多彩的游戏游戏永远是孩子最喜欢的活动。在教学过程中,我们采用了多种形式的游戏,调动了他们的兴趣和学习积极性。
表演游戏如:在学习古诗《咏鹅》教学活动中,活动前制作了许多白鹅头饰,鹅翅膀,红掌等,教学时学生扮成一只只曲项向天歌的大白鹅浮水,拨清波,跟着白鹅妈妈玩游戏,在快乐,有趣的白鹅戏水游戏中学会咏诵了古诗,达到了很好的效果。
学习三字经过程中让学生分角色游戏,使学生知道学习的目标和意义。在学习弟子规过程中使学生懂得了尊敬老师孝敬父母和做人方面的知识等。智力游戏智力游戏是教学中经常使用一种有效的游戏形式,在国学经典教学中,我们设计开展了形式多样的智力游戏。
极大地调动孩子学习积极性,取得较好教学效果。(3)竞赛游戏孩子们的竞赛意识很强,并初步形成了一定的合作意识。我们常常开展一些个人或小组的竞赛,比一比,看谁诵读的内容多。
关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8
UHMWPE辐照交联,添加助剂改性
首先呢,我们再去选题的时候需要特别注意不要去选那些范围过大或是过难的题目,以免导致后期写作时需要花费过多的精力,如果查重后又还不合格的话,那么在返修的时候就会更加的头大了。也不要去选择那些过于老套,缺乏新意的题目,我们在选择时最好是在之前别人有过的观点上,去提出一些从未涉及到或者是未能完全解决的问题。所选的题目最好是能与现实生活、当代科技想贴切的话题,但要注意选择的题目与观点不能相矛盾。因为我们的论文也还是要通过指导老师检查的,通常老师首先就会先看你论文中的观点是否准确,观点与选题内容是否相吻合,所以确立一个明确的论文观点,就是我们写毕业论文的关键所在。论文的基本观点通常是指我们对整篇论文的一些总结以及心得,如果连论文的基本观点都是错的,那么其他的一切论点、论据都是不能成立的,整篇论文也就会站不住脚。论文的论点也必须要十分的准确才行,如果有缺乏论证资料的那么就要去选择一些比较典型的进行补充说明,不然就会导致论点不突出没有重点。论文的主体观点明确之后,就需要我们去搜集相关方面的论证资料了。收集到的资料也要注意进行梳选,然后将比较贴合论文主体而且相对比较突出具有代表的用来给所写的论文提供证明。
想了解更多,百度一下PP论坛,很多关于薄膜的资料,里面有很多做PE,PET,CPP, BOPP, PVC, PA,PS薄膜的朋友
1 聚氯乙烯树脂行业发展趋势我国聚氯乙烯树脂消费主要集中在华南和华东两个地区,广东、浙江、福建、山东和江苏等省份的消费合计约占全国总消费量的 70. 0%,其中,广东和福建省市场需求量最大,但产能不足,进口聚氯乙烯树脂所占比例较高; 江苏、山东和浙江省聚氯乙烯树脂加工工业比较发达,三省的消费量约占国内总消费量的 34. 0%; 华北地区产销基本平衡。随着中西部地区开发力度的加强以及大规模基础设施的兴建,中西部聚氯乙烯树脂的消费量将会逐渐增加。2 需求预测聚氯乙烯树脂行业属于基础型和能源密集型产业,受需求和能源价格影响较大,同时又是基础化工原料,因此与经济发展关联也非常紧密。从 2012 年的情况来看,由于国内聚氯乙烯树脂产能仍不断减少,而下游需求增长相对缓慢,加之出口受阻,进口增加,因此国内聚氯乙烯树脂企业整体开工率不高,产能闲置数量较大,市场价格也始终保持中低位徘徊,价格波动区间减小,另外,聚氯乙烯树脂期货的上市在一定程度上增加了聚氯乙烯树脂市场价格波动的不确定性。我国聚氯乙烯树脂行业仍将处于一个较为艰难的整合期,将有多种因素影响到我国未来聚氯乙烯树脂的发展。3 出口问题① 成本壁垒PVC 属于基础化工原料,产品差异性较小,在国内完全竞争的市场格局下,成本高低是影响企业竞争能力的最主要因素。由于行业特性,原材料和能源在产品成本中占有较高比重。石油乙烯法的成本主要受石油价格影响;电石法的生产成本主要受电石成本影响,一般而言,电石成本占PVC 成本的70%左右,而电力成本又占到电石成本的60%左右,由于我国西部电力资源丰富,电价相对较低,与东部电石法生产企业相比,西部电石法生产企业在成本方面具有一定优势。而具备资源秉赋,配套电石生产的企业,将构筑更加坚实的成本壁垒。② 产业政策壁垒为促进氯碱行业产业结构升级,规范行业发展,按照“优化布局、有序发展、调整结构、节约能源、保护环境、安全生产、技术进步”的可持续发展原则,国家发改委制订发布了《氯碱(烧碱、聚氯乙烯)行业准入条件》,并自2007 年12月1 日起开始执行:在产业布局方面要求新建氯碱生产企业应靠近资源、能源产地,东部地区除搬迁企业外原则上不再新建电石法聚氯乙烯项目和与其相配套的烧碱项目;工艺方面要求新建、改扩建电石法聚氯乙烯项目必须同时配套建设电石渣制水泥等电石渣综合利用装置;准入条件还从能耗指标和环保方面对新建项目设定了标准。产业政策的调整大大提高氯碱行业的资金、技术、人才、资源门槛。③ 规模壁垒生产PVC 所需投资规模较大,固定成本较高,规模效益比较明显。规模大的企业在与供应商的谈判中处于更有利的地位,有利于降低原材料成本。产销量大的企业,市场占有率也相应较高,具有更大的市场影响力,相对更容易获得客户。PVC 生产企业一旦产销达到较大规模后,边际成本将逐步降低,并增强抗风险能力。④ 资金壁垒同时,随着国家对安全、环保监管的日益严格,氯碱生产装置建设必须配套相应的大型环保装置(如电石路线必须配套电石渣制水泥装置等),资金投入较多,大部分的中小企业一般无力承担。因此,投资本行业的厂商必须具备强大的资金实力,存在一定的资金壁垒。印度国内市场对PVC的需求逐年增加,从2009年的170余万吨提高至2012年的220余万吨;但前印度只有5家PVC生产企业国内生产能力125万吨/年。印度Finolex工业公司是印度最大的PVC管道生产商。由于供需并不平衡,存在较大缺口,因此印度平均年PVC进口量达95万吨。同时,印度乙烯基原料缺口也逐年增大,2011年为万吨,2012年为万吨,2013年将达112万吨。据统计,2012年4~9月份,印度PVC进口主要来源于韩国、中国台湾、德国、美国、墨西哥等国家和地区,其中来自韩国和中国台湾两地的PVC进口量均超过20万吨。Rajesh Deshpande谈到,印度PVC下游产品以PVC管材及配件为主,占该国PVC下游产品总量的43%。2012~2013财年前六个月下游需求增长20%,进口量增长50%。按照该速度发展,到2013年3月,印度国内市场需求将达220万吨,PVC管材的发展速度也将达到两位数。由于PVC下游消费市场逐年扩大,印度PVC工业迎来较大的发展机遇。据Rajesh Deshpande预测,印度PVC产品下游消费市场的增长源于诸多方面。政府对基础设施建设的投入逐年增加。统计表明,“十二五”期间,印度政府对基础设施建设的投资将达8900亿美元;农村基础设施建设发展基金增加至35亿美元;对农村饮用水及环境卫生投资预算达25亿美元;将投资5300万美元加强灌溉系统建设;在德里—孟买工业走廊,将投资900亿美元建设大型基础设施,其中日本政府赞助45亿美元。尽管供需缺口大,但由于进口产品具有较大竞争优势,印度PVC行业面临一定的挑战。Rajesh Deshpande坦言,印度PVC行业发展还存在一定的问题:比如用户还未能看到塑料管材相对于传统材质管材的优势;环保人士和民间组织从环境危害角度阐述塑料管材的害处;相关生产企业不注重自身产品质量把关等。因此,印度PVC行业要实现可持续发展,就必须不断开发新产品、新技术,同时注重PVC用品的回收和再利用。中国尽管拥有全球最大聚氯乙烯生产能力,但由于乙烯价格下跌,2009年乙烯法聚氯乙烯进口量创下新纪录,另一方面,中国聚氯乙烯市场始终处于低开工率状态。2009年上半年,中国进口了约120万吨聚氯乙烯,比2008年全年进口量还多100万吨。随着乙烯价格暴涨,中国电石法聚氯乙烯生产竞争优势显现出来。2009年下半年,中国聚氯乙烯进口量稳步下降,据中国海关数据,11月份进口量只有60646吨。2013上半年,受行业产能过剩、下游需求疲软等诸多不利因素影响,聚氯乙烯(PVC)行业整体效益表现欠佳,企业处境较为艰难。但聚氯乙烯外贸市场表现抢眼,多项数据较往年同期均有明显恢复性调整。不过业内人士指出,随着美国聚氯乙烯工厂开工率提升,预计我国聚氯乙烯对外贸易将呈现进口量恢复性增长、出口量稳中萎缩的局面。据中国氯碱工业协会统计,截至2013年6月底,国内聚氯乙烯(含糊树脂)产能为2392万吨/年。其中2013年上半年聚氯乙烯新增产能为86万吨/年,退出35万吨/年,净增51万吨/年,退出产能全部为电石法生产装置。行业整体产能扩张速度已有明显放缓,但产能稳中有增的趋势仍在延续。出口方面,1~5月份我国聚氯乙烯累计出口量较去年同期大幅增长。从流向来看,最大出口消费市场是印度;出口至俄罗斯的货源数量则增速放缓,居第二。此外,金融危机暴发以来,全球市场、贸易环境发生了很大改变,各国贸易保护主义抬头,针对我国企业产品的贸易摩擦显著增多。
我国聚氯乙烯需求量分析2008~2009年的全球经济衰退对氯碱行业冲击非常大,并产重打压了下游需求。因氯衍生品的盈利能力仍未恢复,直到2012年,氯碱行业仍然过分依赖烧碱。不过,一旦氯碱行业恢复正常,在氯产品的带动下,出于碱氯平衡的原因,烧碱增长速度将超过需求增速,由此造成全球烧碱供大于求的局面。未来3年,在中国和东南亚地区新兴市场经济快速增长的带动下,全球聚氯乙烯需求将强劲增长。2010~2018年,全球氯碱行业的生产量预计将以年均的速度增长,氯产品的年均需求增长率预计为3. 6%,烧碱的年均消费增长速度为。未来5年在亚洲新兴经济体对聚氯乙烯需求增长的带动下,全球氯碱装置开工率将提升。虽然当前全球经济正处于挑战性时期,中国经济的增长受到全球环境的影响,但他坚信以中国为代表的发展中国家将推动全球经济走向复苏。未来5年,在中国、印度、马来西亚、越南、印度尼西亚和菲律宾等新兴经济体基础设施大发展的带动下,聚氯乙烯的需求将增加。中国目前是世界上最大的聚氯乙烯消费国和生产国,占全球需求的30%左右,占亚洲消费量的60%’65%。2011年中国聚氯乙烯需求量约为1330万吨,较2010年增长了8%。据巴克莱银行的数据,中国2011年烧碱年产能约3400万吨,占全球的41%,位居第一:位居第二的是美洲,占21%:欧洲和独联体占18%;亚洲其余国家和地区合计占16%:中东和非洲约占4%。中国烧碱需求占全球比例为34%,其次是欧洲和独联体占20%,北美占18%,南美占5%
聚氯乙烯膜行业研究及十四五规划分析报告
2019年,全球聚氯乙烯膜市场规模达到了xx亿元,预计2026年可以达到xx亿元,年复合增长率(CAGR)为xx%。中国市场规模增长快速,预计将由2020年的XX亿元增长到2027年的XX亿元,年复合增长率为XX%(2020-2026)。
本报告研究“十三五”期间全球及中国市场聚氯乙烯膜的供给和需求情况,以及“十四五”期间行业发展预测。重点分析全球主要地区聚氯乙烯膜的的产能、产量、销量、收入和增长潜力,历史数据2016-2020年,预测数据2021-2027年。
本文同时着重分析聚氯乙烯膜行业竞争格局,包括全球市场主要厂商竞争格局和中国本土市场主要厂商竞争格局,重点分析全球主要厂商聚氯乙烯膜产能、产量、产值、价格和市场份额,全球聚氯乙烯膜产地分布情况、中国聚氯乙烯膜进出口情况以及行业并购情况等。
此外针对聚氯乙烯膜行业产品分类、应用、行业政策、产业链、生产模式、销售模式、行业发展有利因素、不利因素和进入壁垒也做了详细分析。
全球及国内主要厂商包括:
山东巨晖防水材料
Chinyang Chemical
Premier Polyfilm
Universal Polymers
IBMH
Ecomas Marketing
Gorantla Geosynthetics
Nihon Kutaisyori
Kitex
Tasco
按照不同产品类型,包括如下几个类别:
防止油与水混合型
防止油与空气混合型
防止其他杂质混入空气型
按照不同应用,主要包括如下几个方面:
建筑
包装运输
电子电气
汽车和航空航天
其他
本文包含的主要地区和国家:
北美(美国和加拿大)
欧洲(德国、英国、法国、意大利和其他欧洲国家)
亚太(中国、日本、韩国、中国台湾地区、东南亚、印度等)
拉美(墨西哥和巴西等)
中东及非洲地区(土耳其和沙特等)
本文正文共12章,各章节主要内容如下:
第1章:报告统计范围、产品细分、下游应用领域,以及行业发展总体概况、有利和不利因素、进入壁垒等;
第2章:全球市场供需情况、中国地区供需情况,包括主要地区聚氯乙烯膜产量、销量、收入、价格及市场份额等,也同时包括中国市场进出口情况;
第3章:全球主要地区和国家,聚氯乙烯膜销量和销售收入,2016-2020,及预测2021到2027;
第4章:行业竞争格局分析,包括全球市场企业排名及市场份额、中国市场企业排名和份额、主要厂商聚氯乙烯膜销量、收入、价格和市场份额等;
第5章:全球市场不同类型聚氯乙烯膜销量、收入、价格及份额等;
第6章:全球市场不同应用聚氯乙烯膜销量、收入、价格及份额等;
第7章:行业发展环境分析,包括政策、增长驱动因素、技术趋势、营销等;
第8章:行业供应链分析,包括产业链、主要原料供应情况、下游应用情况、行业采购模式、生产模式、销售模式及销售渠道等;
第9章:全球市场聚氯乙烯膜主要厂商基本情况介绍,包括公司简介、聚氯乙烯膜产品规格型号、销量、价格、收入及公司最新动态等;
第10章:中国市场聚氯乙烯膜进出口情况分析;
第11章:中国市场聚氯乙烯膜主要生产和消费地区分布;
第12章:报告结论。